如图已知等边三角形ABC,请画出它的外接圆和内接圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:07:31
如图已知等边三角形ABC,请画出它的外接圆和内接圆
已知,如图,△ABC和△CDE都是等边三角形,

1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC

如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.

可设三角形ABC边长为1,BD,CE为二分之根号3,又因为ACE是直角三角形,DE为斜边平分线,DE为二分之一AC,也就是二分之一,又因为直角三角形,由勾股定理,AE为二分之一,AD=AE=DE再问:

已知等边三角形ABC,如图,请在平面上找一点P,使△PAB、△PBC、△PAC、同时为等腰三角形,有多少个不同的结果?

1、等边三角形是三心合一中心算一个2、找ac的中心d连接并延长bd等长至ee点一算一个类推共有三个一共有四个吧

已知:如图,AD,BE,CF是等边三角形ABC的角平分线.求证:△DEF是等边三角形.

∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.再问:可以再具体些

2、(1)如图,已知等边三角形ABC,请画出它的外接圆和内接圆; (2)这个外接圆的半径R与内切圆的半径r之

R=2r取任意一个等边三角形的顶点A来看,设圆心为O,圆心答A连接的边的垂足为D.则AO为R,DO为r,容易得到三角形AOD是一个角为30度的直角三角形,所以R=2r再问:时隔三年终于有人解了这题

(1)如图,已知等边三角形ABC,请画出它的外接圆和内接圆; (2)这个外接圆的半径R与内切圆的半径r之

解题思路:(1)如图,已知等边三角形ABC,请画出它的外接圆和内接圆;(2)这个外接圆的半径R与内切圆的半径r之解题过程:(2)

已知:如图,ad、be、cf是等边三角形abc的角平分线 求证:三角形def是等边三角形

证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BE,CF分别平分∠BAC,∠ABC,∠ACB∴AF=BF=二分之一AB,AF=二分之一AC,BD=二分之一BC∴AF

如图,在等边三角形ABC中

解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced

已知:如图,等边三角形DEF的顶点分别在等边三角形ABC的边上.求证:AD=BE=CF

不妨设D,E,F分别在边AB,BC,AC上.∵△ABC,△DEF为正三角形,∴∠A=∠B=∠C=60∠EDF=∠FED=∠EFD=60∠,DE=DF=EF∴∠BDE+∠ADF=180-60=120∠A

如图,已知△ABC是等边三角形,CD=BF,且四边形CDEF是平行四边形,求证:△AED是等边三角形

图嘞?没有话,把各个点的位置说明白也行!再问:hyj再答:利用题中已知条件,可证明△ACD≌△CBF(利用边角边证明即可)又∵四边形CDEF是平行四边形∴AD=CF=DE∠FCB=∠EDB=∠FED∵

已知:如图,AD、BE、CF是等边三角形ABC的角平分线.求证:△DEF的等边三角形

AD、BE、CF是等边三角形ABC的角平分线,又由等边三角形四线合一(中线,角平分线,中垂线,高线),所以D,E,F为中点,那么DE,DF,EF为中位线,又因为AB=AC=BC所以DE=DF=EF.即

已知等边三角形ABC,如图,请在平面上找一点P,使△PAB、△PBC、△PAC、同时为等腰三角形,有多少个不同的

四个  如图所示三条边的垂直平分线交与一点  就这一个点 在以三条边分别做三个等边三角形  那么还可以组成三个点p

如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.

△ADE是等边三角形,证明:∵△ABC是等边三角形,D为边AC的中点,∴BD⊥AC,即∠ADB=90°,由AE⊥EC知∠AEC=90°,∵在Rt△ABD和Rt△ACE中BD=ECAB=AC,∴Rt△A

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

如图,已知等边三角形ABC和等边三角形CDE,P、Q分别为AD、BE的中点.如果将(2)如果将等边三角形CDE绕点C旋转

1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:

格式为 ∵ ∴已知 如图,△ABC是等边三角形,BD是中线,延长BC到E,已知 如图,△ABC是等边三角形,BD是中线,

∠CBA=∠CED+∠CDE=2∠CED所以∠CED=30度,所以EF=2分之根号3,所以DE为根号3CF^2=CE^2-(DE/2)^2CF=05再问:格式不对哟,改对了就采纳分就是你的再答:∵∠C

如图,已知,△ABC为等边三角形,∠DAE=120°.(1) △DAB与△AEC相似吗?请说明理由

相似∵等边三角形ABC∴∠ACB=∠BAC=∠ABC=60°∴∠D=∠ACE=120°∵∠DAE=120°∴∠DAB+∠CAE=60°∵∠ABD=120°∴∠D+∠DAB=60°∴∠CAE=∠D∵∠A