如图所示 半径r 0.4m的光滑半圆型轨道安置在一竖直平面,左侧平滑连接

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:40:47
如图所示 半径r 0.4m的光滑半圆型轨道安置在一竖直平面,左侧平滑连接
如图所示.半径为0.4m的光滑半圆环AB竖直固定在光滑水平地面上,质量为0.1kg的小球以5m/s的速度 从A 点进入半

由机械能守恒小球在B点时的速度V1/2mv0*2=1/2mv^2+mg2RV=3m/S小球在B点所受轨道作用力NN+mg=mv^2/RN=1.25N小球左后落到水平地面上的C点,则AC间的距离2R=1

有挑战性的物理题如图所示,B是质量为2m.半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质量为m的细长直杆,光滑套管

你这上面的第二问应该是竞赛题.要用到积分才能算,对B受到的力的方向和水平方向的夹角进行积分,水平位移好算,夹角范围也好算,难就难在积分这一步.不知道你们有没有学到.那word文档里的第二问就简单了.算

如图所示,ABDO是固定在竖直平面内的光滑轨道,AB是半径为R=15 m的四分之一圆周轨道,半径OA处于水平位置

1)机械能守恒:mgh=1/2mv²解得v=10√(2)=14.142)机械能守恒:mgh=1/2mv²,小球脱离轨道后降地时长:t=√(2R/2/g),其中R=15由几何关系得同

24,如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,

(1)恰好通过,即向心力就是重力:mg=mv²/Rv=√5m/s(根号5米每秒)(2)根据运动独立性,2R=½gt²t=√5/5s(五分之根号五秒)CD距离x=vt=1m

如图所示,光滑的水平轨道与光滑半圆轨道相切,圆轨道半径R=0.4m一个小球停放在水平光滑轨道上,

1、有能量守恒定律mV0^2/2=mg*2R+mV^2/2,可得到飞出时的速度为V1=3m/s.2、假设C点时,轨道作用力是小球重力的n倍,则有向心力可得到mV^2/R=mgn+mg,可得n=1.25

如图所示,弧AB是半径为R的1/4圆弧,在AB上固定一个光滑的木板DB.一质量为m,

1/2mv2=mgul可得B处速度:根号2guL.所以高度为UL.由几何性质BD的水平距离:[根号2URL-(UL)2]设为d.之后就是一些简单的计算了.

如图所示,竖直平面内的3/4圆弧形光滑轨道ABC,其半径

(1)恰好到达最高点mg=mv^2/Rv=根号gRR=1/2gt^2t=根号2R/gvt=Xod=R根号2(2)能量守恒重力势能转化为动能mgH=1/2mv^2H=1/2Rh=H+R=3/2R(3)m

如图所示,AB为半径R=0.8m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量M=3kg,车长L=2.06m

还需要答案吗再答:再答:再答:再答:再答:希望采纳我花了好长时间做出来的再答:不用谢不过真的好难我想了超久再问:为什么第二问算距离用他们达到共同速度时候的速度,不是用初速度吗?再答:其实前者是最准确的

如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,一个质量为m的小球...

如果是mg/cos30°,这就表示你对力的合成和分解理解的不够.因为按照你这分解,重力是对应的直角边,斜边才是向心力F(但实际上F仅仅是向心力的一部分而已,也就是说你给出的mg/cos30°仅仅是其中

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(

.当然就是说你根本爬不到一半高,它就会沿轨道落回去.就不会脱离轨道.这类似脑筋急转弯了当然除了这种情况,也有速度达到v0使得mv0²/2=2Gr+mv1²;其中m为小球质量,v1满

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小很多)

一个是高速Vo通过,应该不用解释,另一个是低速不脱离轨道,因为当速度大于这个低速Vo但不高于高速Vo时,就会因为小球超出圆心等高的点,即会在1/4圆周到1/2圆周(轨道顶点)中间某位置脱离轨道抛落,如

如图所示,AOB是光滑水平轨道,BC是半径为R的1/4光滑圆弧轨道,两轨道恰好相切,质量为M的小木块静止在O点,一质量为

完全非弹性碰撞,动量守恒,即有:mv=(m+M)v',v‘=mv/(m+M)=0.1v又,gR=0.5v'^2,所以0.005v^2=gR,v=200gR木块随后滑落回O点时,其速率为v’=0.1v第

如图所示,光滑的倾斜轨道与半径为R的光滑圆形轨道相连接,质量为m的小球,

(1)要使小球恰能通过圆形轨道的最高点,需有mV²/r=mg①根据动能定理mgH-mg(2r)=1/2mV²②由①②式得H=2.5r③(2)令最低点速度为v1,则由动能定理1/2m

*12.如图所示,光滑圆管形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r《R,有一质量m,半

(1)小球从进入到C点,机械能守恒m*V0^2/2=mg*2R+(mVc^2/2)若要小球能从C端出来,Vc≥0得 V0≥2*根号(gR)(2)在小球从C端出来的瞬间,对管壁压力有三种典型情况第一种:

如图所示,A、B为两个相同的1/4光滑圆弧轨道固定在水平面上,两圆弧半径均为R=1.8m,

这道题并不难,关键是做好受力分析(1)小物块通过圆弧轨道A的最低点时对轨道的压力对木块在轨道A最低点点进行受力分析(重力G支持力N,轨道光滑无摩擦)G=mg由于做圆周运动,N-G=mv²/R

如图所示,有一半径为R的半球形凹槽P,放在光滑的水平地面上,一面紧靠在光滑墙壁上,在槽口上有一质量为m

在A→B过程中:m机械能守恒(凹槽与小球组成的系统动量不守恒)①(2分)在B→C过程中:凹槽与小球组成的系统动量守恒,机械能守恒,设凹槽质量为M,则小球到达最高点C时,M、m具有共同末速度.②(2分)

如图所示 半径r 0.40m的光滑半圆环轨道安置在一竖直平面上,左侧平滑连接光滑的弧形轨道,将质量

给图再问:再答:第一题h为1m再问:过程,谢谢再答:b点压力为0,受力分析,向心力等于重力再答:

如图所示,小球A从半径为R=0.8m的1/4光滑圆弧轨道的上端点以v0=3m

1.正电荷2.你先受力分析下可得方程tanθ=E*q/(m*g)可求出E=mgtanθ/q

如图所示,半径为R的光滑四分之一圆弧轨道静止在光滑水平面上,轨道质量为M,现将一

(1)以小球和轨道为系统,在水平方向合外力为零动量守恒(竖直方向合外力不为零动量不守恒)只有重力做功机械能守恒(2)小球沿轨道下滑过程中,轨道对小球的支持力与轨迹的夹角》90^0做负功.(3)小球滑到

如图所示,B是质量为2m、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质量为m的细长直杆,光滑套管D被固定在竖直方

(1)长直杆的下端运动到碗的最低点时,长直杆在竖直方向的速度为0由机械能守恒定律mgR=12×3mv2vB=vC=2Rg3(2)长直杆的下端上升到所能达到的最高点时,长直杆在竖直方向的速度为012×2