如图所示,AB为圆O直径,弦CD交AB于P,且角APD等于60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:20:22
解析:(1)连接OC,由AD=13BD知,点D为AO的中点,又∵AB为圆的直径,∴AC⊥BC,∵3AC=BC,∴∠CAB=60°,∴△ACO为等边三角形,∴CD⊥AO.∵点P在圆O所在平面上的正投影为
连接OC,交弦AB于E.因为c是弧AB的中点,所以容易证明oc垂直弦AB.作辅助直线OF垂直弦CD交弦与F.那么CF长为根号3.,oc为半径2.用直角三角形可得,OF等于1.那么角COF为60°.那么
∵AB是直径,CD⊥AB于P,∴弧AC=弧AD,且CD=2CP∴∠ACD=∠CBA∵∠ACB=∠APC∴△ACP∽△CBP∴AP:CP=CP:BP即CP²=AP*BP=2*10=20则CP=
1.连接AB,因为OC=OA,所以∠OCA=∠OAC,因为∠ACD+∠OCA=90°,所以∠ACD+∠OAC=90°.因为∠OAC+∠B=90°,所以∠B=∠ACD.因为OB=OC,所以∠B=∠OCD
(1)连接ac.co∴co=4∵cd⊥ab∴ch=hd=2根号3在△cho中,co^2=ho^2+ch^2∴ho=2∴∠coh=60°∵co=ao∴△cao为正三角形∴∠bac=60°(2)∵e为弧a
设直线CD交小圆于M、交圆O于N.因为AB为圆O的直径,C为圆O上的一点,CD垂直于AB于D所以CD=DNCD²=AD*BDCD=6CD=DN=CM=6由相交玄定理得PE×EQ=ME×DE=
再答:�Լ����������£�˼·��������
连接OC∵OA=OC∴∠OAC=∠OCA∴∠COP=∠OAC+∠OCA=2∠OAC∵PC切圆O于C∴∠OCP=90∴∠CPA+∠COP=90∴∠CPA=90-∠COP=90-2∠OAC∵PM平分∠CP
连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)
已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9
证明:连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵是切线切线,AB
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
因为AB=1,C、D是AB的三等分点,所以AC=13,AD=23,阴影部分的面积是:π×[(23)2-(13)2],=π×(49-19),=13π;答:阴影部分的面积是13π.
证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC
第一题:∵AB是直径,C是圆上一点,那么∠ACB是直角.又∵BC=√3AC∴∠ABC=30∴∠BAC=60AC=1/2AB=2又∵AD=1/4=1∴∠ACD=30因此可以推出∠ADC=180-∠BAC
发图你哈再答:再问:OD=1/2AB???再答:都是圆半径再问:帮我普及一下梯形关系,是两腰的中点连线等于上低加下底的一半吗?再答:嗯再答:中位线再问:怎么证明EC=DF?我只能证明圆里面的垂直平分.
作OQ⊥AB,连DO并延长MC于P,连接OA则AQ=BQ=AB/2因为MC⊥AB,ND⊥AB所以MC//ND//OQ所以∠M=∠N又因为∠POM=∠DON,OM=ON所以△MOP≌△NOD所以MP=N
(1)如图1,连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD+∠ADC=180°,∴AD∥OC,∴∠1=∠2,∵OA=OC,∴∠2=∠3,
证明:连接OC,因为C为切点,所以OC⊥DC∵AD⊥DC,∴AD平行OC,∴∠DAC=∠ACO∵OA=OC,∴∠ACO=∠CAO∴∠CAO=∠DAC∴AC平分∠CAB