如图所示,C是圆O上弧ACB的中点,弦AB=6

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:23:20
如图所示,C是圆O上弧ACB的中点,弦AB=6
已知圆O:x^2+y^2=r^2内一点C(c,o),A,B在圆O上,且角ACB=90度,求AB中点P的轨迹方程

连接OP,则OP⊥AB,|OP|²+|BP|²=r²由于角ACB=90度,P是AB中点,所以|PC|=|AB|/2=|BP|所以|PC|²+|OP|²

如图,在圆O中,角aob的度数为m,C是弧ACB上一点,DE是弧AB上不同的两点,则角D+角E的度数是

连结DB,则∠E=∠BDC,由同弧所对圆周角为圆心角的一半,得,弧ACB所对圆周角∠ADB是其所对圆心角∠AOB(注意,是大角)的一半,即∠D+∠E=∠ADB=1/2∠AOB(大角)=1/2(360°

如图,已知AB是圆O的直径,AB=10,点C,D在圆O上,DC平分∠ACB,∠EAC=∠D.

这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠

如图 已知AB是圆O的直径,C为圆周上一点,求证:∠ACB=90°

连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9

如图,在圆O中,AB是直径,C为圆周上一点,AC:BC=3:4,AB=10cm.角ACB的平分线交圆O于点D,连接AD,

/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X

如图,A、B、C是圆O上三点,角AOB=100度,求角ACB的度数.

∠ACB=1/2(360°-∠AOB)=1/2×(360°-100°)=130°.

如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、

当GH为⊙O的直径时,GE+FH有最大值.当GH为直径时,E点与O点重合,∴AC也是直径,AC=14.∵∠ABC是直径上的圆周角,∴∠ABC=90°,∵∠C=30°,∴AB=12AC=7.∵点E、F分

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

如图△ABC中,角ACB=90°,D为AB上一点,且AD=BD,点A,C在圆O上,且AB是圆O的切线,连接CD求证CD是

连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线

如图所示,AB是圆O的弦,C、D为弦AB上的两点,且OC=OD,延长OC、OD分别交圆O于点E、F.求证:弧AE=弧BF

证明:过O作OH⊥AB,则H为AB中点     ∵OC=OD,∴H为CD中点     ∴AC=BD&

如图,AB是圆O上的一条弦,点C是圆O上的一动点,且知道角ACB=30度,点E、F分别是AC、AB上的中点,直线EF与圆

由于点E、F分别是AC、AB上的中点,在三角形ABC中,中位线EF=AB/2GE+FH=GH-EF=GH-AB/2由于AB是不变的,当GH最长时,GE+FH有最大值而在圆中,GH最长为直径,∴当GH为

如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.

(1)∵OD⊥AB,∴∠OCA=90°,在Rt△OAC中,由勾股定理得:AC=OA2−OC2=52−32=4,∵OD⊥AB,OD过O,∴AB=2AC=8.(2)∵OD⊥AB,OD过O,∴弧AD=弧BD

如图所示AB是圆O的直径DE在圆O上AE,BD的延长线交于C且AB=AC求证BD=DE

证明:AB为直径所以∠ADB=90度因为AB=AC所以三角形BAC为等腰三角形(等腰三角形三线合一性质)所以BD平分∠BAC因为∠BAD=∠CAD所以弧BD=弧DE所以BD=DE

如图,一条公路的转弯处是一段圆弧(图中的弧ACB),点O是这段弧的圆心,C是AB上一点,OC⊥AB,垂足为D,AB=30

∵OC⊥AB,AB=300m,CD=50m,∴BD=AD=150m,设这段弯路的半径为xm,则:BO=xm,OD=(x-50)m,在Rt△BOD中,OD2+BD2=BO2,∴(x-50)2+1502=

已知圆O的半径为2,弦AB的长为2倍根号3,点C与点D分别是劣弧AB与优弧ADB上的任意一点,求角ACB

连结OA、AD、BD,作OM⊥AB于M,则AM=1/2×AB=√3.在ΔAOM中,易得sin∠AOM=AM/AO=√3/2,∴∠AOM=60°∴∠ADB=∠AOM=60°∠C=180°-∠ADB=12

如图所示,已知A,B是圆O上的两点,∠AOB=120°,C是弧AB的中点,若圆O的半径为4㎝,求四边形OACB的面积

AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=

如图所示,在直角三角形ABC中,角ACB=90度,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径,做圆O,

答案是B.已知AC是圆O的直径,则点O是AC的中点(不可能是任意位置),又点P是CD的中点,故在三角形ACD内直线OP是中位线,长度等于直线AD的一半.因直线AB=10,直线CD是中线,故点D是直线A

如图所示,AB是圆O的直径,C为圆O上一点,AD与过C点的圆O的切线互相垂直,垂足为DAC平分角BAD

(1)如图1,连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD+∠ADC=180°,∴AD∥OC,∴∠1=∠2,∵OA=OC,∴∠2=∠3,