如图所示,C是圆O上弧ACB的中点,弦AB=6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:23:20
连接OP,则OP⊥AB,|OP|²+|BP|²=r²由于角ACB=90度,P是AB中点,所以|PC|=|AB|/2=|BP|所以|PC|²+|OP|²
连结DB,则∠E=∠BDC,由同弧所对圆周角为圆心角的一半,得,弧ACB所对圆周角∠ADB是其所对圆心角∠AOB(注意,是大角)的一半,即∠D+∠E=∠ADB=1/2∠AOB(大角)=1/2(360°
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9
/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X
∠ACB=1/2(360°-∠AOB)=1/2×(360°-100°)=130°.
当GH为⊙O的直径时,GE+FH有最大值.当GH为直径时,E点与O点重合,∴AC也是直径,AC=14.∵∠ABC是直径上的圆周角,∴∠ABC=90°,∵∠C=30°,∴AB=12AC=7.∵点E、F分
已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
证明:过O作OH⊥AB,则H为AB中点 ∵OC=OD,∴H为CD中点 ∴AC=BD&
由于点E、F分别是AC、AB上的中点,在三角形ABC中,中位线EF=AB/2GE+FH=GH-EF=GH-AB/2由于AB是不变的,当GH最长时,GE+FH有最大值而在圆中,GH最长为直径,∴当GH为
因为AB是圆O的直径,所以角ACB=90°!
(1)∵OD⊥AB,∴∠OCA=90°,在Rt△OAC中,由勾股定理得:AC=OA2−OC2=52−32=4,∵OD⊥AB,OD过O,∴AB=2AC=8.(2)∵OD⊥AB,OD过O,∴弧AD=弧BD
证明:AB为直径所以∠ADB=90度因为AB=AC所以三角形BAC为等腰三角形(等腰三角形三线合一性质)所以BD平分∠BAC因为∠BAD=∠CAD所以弧BD=弧DE所以BD=DE
∵OC⊥AB,AB=300m,CD=50m,∴BD=AD=150m,设这段弯路的半径为xm,则:BO=xm,OD=(x-50)m,在Rt△BOD中,OD2+BD2=BO2,∴(x-50)2+1502=
连结OA、AD、BD,作OM⊥AB于M,则AM=1/2×AB=√3.在ΔAOM中,易得sin∠AOM=AM/AO=√3/2,∴∠AOM=60°∴∠ADB=∠AOM=60°∠C=180°-∠ADB=12
AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=
答案是B.已知AC是圆O的直径,则点O是AC的中点(不可能是任意位置),又点P是CD的中点,故在三角形ACD内直线OP是中位线,长度等于直线AD的一半.因直线AB=10,直线CD是中线,故点D是直线A
(1)如图1,连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD+∠ADC=180°,∴AD∥OC,∴∠1=∠2,∵OA=OC,∴∠2=∠3,