如图所示,光滑固定导轨水平放置,两根导体棒平行放置在导轨上形成一个闭合回路,当(
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:31:39
(1)a棒匀速运动时,拉力与安培力平衡,F=BIL得:I=3mgBL(2)金属棒a切割磁感线,产生的电动势E=BLv回路电流I=E2R 联立得:v=23mgRB2L2(3)b棒平
(1)由于可以到达D点,N点必然有速度,必然需要向心力.而且,电场力此时一定向右,大小为Eq.因此,需要的支撑力一定大于Eq,AB都是错的.选项C是对的.此时的向心力可以由电场力提供,支撑力为0.小球
在0-4s内,电路中产生的感应电动势为E=△B△tS=0.5×0.5×2V=0.5V,感应电流为I=ER+r=0.54+1A=0.1A.由题,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发
(1)金属杆在 5S末切割磁感线产生的感应电动势 E=BLv感应电流 I=ER+r电压表示数 U=IR 
图?再问:没有,可以做吧再答:我试试再答:电流电压表接在轨道还是电机再问:电机再问:做完没?再答:再答:再答:完成,仅供参考
因为外电路是2个电阻R并联,总电阻为R/2,所以通过导体杆的电流为:2BLv0/R.则安培力为:2B²L²v0/R
选ACDab棒运动时,棒两端会产生电势差,E=BLV,这个是最基本的电磁感应规律啦.然后电势差会使得电阻R中产生电流,I=E/R电流I会导致棒ab受到电磁力,F1=BIL=B^2*L^2*V/R所以,
(1)设流过金属杆中的电流为I,由平衡条件得: F=BI•L2解得,I=2FBL因R\x05 1=R\x05 2,所以流过R\x05 1
最大速度时电势差为BL(vm-v)a,b各自的安培力为BBLL(v-vm)/2R对于b最大速度时加速度为0受力平衡所以弹簧的力等于安培力BBLL(v-vm)/2R利用能量守恒弹簧的弹性势能为1/2Ma
此题是一道关于作用力与反作用力的原理.磁铁下落接近闭合回路时,会在闭合回路中产生感应电流,而感应电流所产生的磁场会跟下落磁铁的磁场相反.因此加速度会小于g.
安培力做了功,安培力做功将机械能转化为电能,电流通过电阻后又将电能转化为热能,所以电阻 R产生的热量本质是安培力做的功,对上述过程用动能定理有:Pt-W安=mv32/2, 即18×
选B,知道力的方向求电流方向用左手,不是用左手是用右手,因为判断产生感应电流的方向是右手定则啊.如果学了楞次定律,也可用其中的阻碍来做
选AD根据楞次定律:当一条形磁铁从高处下落接近回路时,穿过回路的磁通量增大,感应电流的磁场阻碍磁通量增大,产生两个效果:1、使回路面积减小——P、Q将互相靠拢,A对B错2、阻碍磁铁下落——感应电流的磁
.当然就是说你根本爬不到一半高,它就会沿轨道落回去.就不会脱离轨道.这类似脑筋急转弯了当然除了这种情况,也有速度达到v0使得mv0²/2=2Gr+mv1²;其中m为小球质量,v1满
C、D由于两种情况下,最终棒都以速度2v匀速运动,此时拉力与安培力大小相等,则有: F=F安=BIL=BL•BL•2vR=2B2L2vR ①当拉力恒定,速度为v,加速度
A设磁铁为K,则Bk向下,且在PQMN所在平面上增大.因为楞次定律,所以PQMN产生向上的B’.所以线框上电流为俯视逆时针,由此,P上电流向下,Q上电流向上(俯视).又因为P、Q所受磁场向下(如图视角
当磁铁接近他们的回路时,回路磁通量将增加.而面积越大,磁通量越大,根据楞次定律,为“阻止”磁通量增加,两导体棒趋向于相互靠近使面积减小.一楼的难道就不会怀疑一下楼主是否写错题目了么……明明根据楞次定律
(1)金属棒未进入磁场时,磁场产生感应电动势,导体棒与定值电阻R并联,等效电路如图R总=RL+R2=4+1=5Ω 由感生电动势表达