如图所示,在平面直角坐标系求圆形磁场的最小面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:15:53
解题思路:MN的中垂线就是AB,求出AB的直线方程即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.co
过A点作Y轴垂线,交Y轴于C点,过B点作X轴垂线,交X轴于D点,CA与DB相交于E点,∴四边形ODEC是矩形,且OD=6,OC=5,CA=2,AE=4,BD=2,EB=3,∴△OAB的面积=矩形ODE
提示:这道题可以依据题意设不同的抛物线形式,这里用最基本的方式(1)由题意可知各点坐标为A(-8,0),A1(8,0)B(-8,6),B1(8,6)C(0,8)由于顶部过B,C,C1三点,设抛物线方程
如果每一格各边都是以1为单位,那么:4*8-3-2-3/2-3-8=16-1.5=14.5是四边形的面积(就是用四边形所在的矩形的面积减去四边形oabc周围的四个三角形的面积和一个小的长方形的面积)若
找关系,列函数式子,化简,找规律,就可以看出了
如图,C点坐标为(-3,3),S△ABO=S正方形OECD-S△OAD-S△OBE-S△ABC=3×3-12×3×2-12×3×1-12×2×1=9-3-32-1=72.
在平面直角坐标系中,求一个三角形的面积,则需要根据三角形的各顶点的坐标,确定边长或高,进而求出三角形的面积.而对于四边形,五边形等图形面积的计算,则往往需要转化为三角形解决
将4个点连起来就行了,每个点到顶点的距离为根号2.
小题1:A(-2,3)B(-6,2) C(-9,7)小题2:S△ABC=11.5小题3:A1(2,0)、B1(-2,-1)、C1(-9,7)(1)根据各点所在象限的符号和距坐标轴的距离可得各
解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:
/>△ABO被3×3的正方形正覆盖∴△ABO面积=3²-﹙½×1×2+½×1×3+½×2×3﹚=9-11/2=7/2
设C(a,b),b/(a-6)=-a/b,(a-6)²+b²=27.解得:a=1.5b=√6.75C(1.5,√(6.75))
(1)依条件有D(0,-4),E(0,.1)由△OEA∽△ADO知OA=OE*OD=4.∴A(2,0)由Rt△ADE≌Rt△ABF得DE=AF∴F(3,0).将A,F的坐标代入抛物线方程,得4a+2b
(1)设电场强度为E.在y的负半轴里面,粒子受到方向向上的电场力作用,在y轴正方向上作匀加速运动,在x轴正方向上作匀速直线运动,然后通过原点.运动时间t=2h/v0则匀加速运动的加速度a=2h/t^2
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
S口ABCD=½[(XB-XA)(YC-YA)+(XC-XA)(YD-YA)-(XC-XA)(YB-YA)-(XD-XA)(YC-YA)]
解题思路:利用二次函数计算解题过程:请看附件最终答案:略
因为,B(-1,-1),C(2,-1)所以BC=2-(-1)=3∵A(1,1)∴△ABC对应的BC的高为h=1-(-1)=2则△ABC的面积为S=BC×h÷2=3
一般有三种方法:切,割,补.求采纳.
(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x