如图所示,在正方形ABCD-A1B1C1D1中,M.N分别是BB1.BC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:52:55
作AH⊥FB,(H在FB上),连DH,ABCD为正方形,EA⊥面ABCD,AD⊥BAEF面,FB⊥AD,DH⊥AD,∠AHD是二面角A-FB-D,作EG∥FB,(G在AB上),△ABH∽△EGA,AH
这里不是有答案吗?过C点作CE⊥x轴于E.∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,又∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∠AOB=∠BE
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
...这个四边形EFGH应该是正方形吧.S大正=(a+b)²=a²+2ab+b²同时,S大正=4×1/2×ab+c²=2ab+c²因为大正方形面积不变
1.Eq=maL=0.5at^2L=vtEk=0.5mv^2得E=4Ek/qL则根据动能定理得EK末=(1+4/qL)Ek2.同理Ek‘=Eqd+Ek,d为电荷运动的竖直距离d=0.5at^2Eq=m
将4个点连起来就行了,每个点到顶点的距离为根号2.
根据题意有:a²=8;a=2√2;a的相反数为:﹣2√2;
A、线圈向东平动时,ba和cd两边切割磁感线,且两边切割磁感线产生的感应电动势大小相同,根据右手定则知,a点的电势比b点的电势低.故A正确.B、向北平动时,bc和ad两边切割磁感线,且两边切割磁感线产
(1)P在AB上时0≤x≤2,y=2x/2=xP在BC上时2
(1)DP=DA,证明:连接AP,BP,∵点P是△ABC内心,∴∠BAP=∠CAP,∵四边形ABCD是正方形,∴∠ABP=∠CBP=45°,∴P在对角线BD上,∴∠DPA=∠DBA+∠BAP=45°+
解题思路:从等量同种点电荷所形成的电场的场强分布规律结合相关的概念与规律去分析。解题过程:最终答案:
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
(1)依条件有D(0,-4),E(0,.1)由△OEA∽△ADO知OA=OE*OD=4.∴A(2,0)由Rt△ADE≌Rt△ABF得DE=AF∴F(3,0).将A,F的坐标代入抛物线方程,得4a+2b
正方形对角线长8根号2cm路程相当于四分之一个圆弧长2π×8根号2÷4=4根号2πcm
利用相似DOA~ABA1AB=AD=根号10AB/DO=A1B/AOA1B=1*根号10/3=根号10/3A1C=BC+A1B=(4/3)根号10假设ABCD边长为a0=根号10A1B1C1C边长为a
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
1.做法一:连接ACAC//FG所以S△FGA=S△FGC=b²/2做法二:S△FGA=ABCD+FCGE-S△ABG-S△ADF-S△EFG=a²+b²-(a+b)a/
⑴∠ADC=∠A1DC=90º,∴∠ADA1=180ºA,D,A1三点共线.⑵⊿BCE≌⊿B1CE(SAS)∠EB1C=∠EBC=a∴∠BRF=∠EB1C+∠EBC=2a.