如图所示,在正方形abcd中e是对角线ag上的一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:49:04
PE+PD最小就是BE的长,BE就是正方形的边长,∴S正方形ABCD=25.
证明:因为:E,G,F分别是BM,PB,PC的中点所以:EG∥PM,且EG=(1/2)PM,GF∥BC,且GF=(1/2)BC由于:BC∥AD,BC=AD=DP所以:GF∥AD而:AD,PM都在平面A
作AH⊥FB,(H在FB上),连DH,ABCD为正方形,EA⊥面ABCD,AD⊥BAEF面,FB⊥AD,DH⊥AD,∠AHD是二面角A-FB-D,作EG∥FB,(G在AB上),△ABH∽△EGA,AH
延长EA至H,使AH=FC;连BH;则,AH=FC,AB=BC,∠BCF=∠BAH=90°;三角形BCF与三角形BAH全等;所以BF=BH,∠ABH=∠FBC;∠EAH=∠EAB+∠ABH=∠EAB+
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.
太简单了吧90再问:请你回答90是什么?再答:角度呗
证明:作一边为AD顶点为A 角度等于∠BAE的角 并交CD的延长线于M点 AE平分∠BAF所以 角BAE=∠EAF=MAD 另根据四边形A
将4个点连起来就行了,每个点到顶点的距离为根号2.
证明:如图,连接DE,在正方形ABCD中,AB=AD,∠BAC=∠DAC,∵在△ABE和△ADE中,AB=AD∠BAC=∠DACAE=AE,∴△ABE≌△ADE(SAS),∴BE=DE,∵EF⊥CD于
(1)HL定理证明三角形ADF与三角形ABE全等(2)题目未写完再问:连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM。判断四边形AEMF是什么特殊四边形?并证明你的结论再答:菱形,
作GH⊥BF交BF于H.∵GB平分∠CBF,∠CBF=90°∴∠GBF=45°,△GBH为等腰直角△∴BH=GH∵DE⊥EG∴∠ADE=∠GEH∴Rt△ADE∽Rt△GEHEH/GH=DA/AE=2:
延长EC至F'使CF'=AF,连BF'则容易证明两个直角三角形BAF和BCF'全等∠ABF=∠CBF'BF=BF'BE=BEEF'=EC+CF'=EC+AF=EF△FBE≌△F'BE∠EBF=∠EBF
∵G、F分别是AD、D1D的中点,∴GF是△DAD1的中位线,∴GF∥AD1,∴AD1∥平面BGF.∵ABCD-A1B1C1D1是直四棱柱,∴BB1=DD1、BB1∥DD1.∵FD1=DD1/2、BE
你改成了一个错误的例题.∠EAF=45°,是个定角,可是它的两边落在BC和CD上时,随着位置的变化,BE和DF的长度也在发生变化,它俩一般情况下是不等的,只当角EAF的角平分线是AC(即正方形的对角线
∵ABCD是正方形∴AD=AB∠D=∠ABC=∠ABF=90°即∠D=∠ABF=90°∵DE=BF∴△ADE≌△ABF(SAS)∴AE=AF=3
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°,∴∠D=∠ABF=90°,又DE=BF,AD=AB,∴△ADE≌△ABF.(2)将△ADE顺时针旋转90后与△ABF重合,旋
⑴∠ADC=∠A1DC=90º,∴∠ADA1=180ºA,D,A1三点共线.⑵⊿BCE≌⊿B1CE(SAS)∠EB1C=∠EBC=a∴∠BRF=∠EB1C+∠EBC=2a.