如图所示,将半径为r的光滑圆弧轨道AB固定在竖直平面内,轨道末端

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:59:16
如图所示,将半径为r的光滑圆弧轨道AB固定在竖直平面内,轨道末端
如图如图所示,竖直平面内有一光滑圆弧轨道,其半径为R,平台与轨道的最高点等高,一小球从平台边缘

设小球到达P点的速度为v,竖直方向速度为v1,(1)P点与A点的高度差h=R-Rcos53=0.2mA到P机械能守恒:0.5mv0^2+mgh=0.5mv^2因:v^2=v1^2+v0^2则:v1^2

如图所示 ,在竖直平面内固定的 圆形绝缘轨道的圆心在O点、半径为r,内壁光滑,A、B两点分别是圆弧的最低

重力和电场力的合力可以看做一个新的“倾斜的”重力C点速度最快,也就是新的“最低点”,对应的D点就是“最高点”,所以如果在B点不受压力的话小球是不可能到达D点的.题中已说了“小球做完整的圆周运动”所以速

(2014•湛江二模)如图所示,竖直平面内有一个半径为R=0.8m 的固定光滑四分之一圆弧轨道PM,P&nbs

(1)设A刚滑上圆弧轨道的速度为vA,因为A刚好滑到P点,A上滑过程中机械能守恒,由机械能守恒定律得:12mAvA2=mAgR…①设A在M点受到的支持力为F,由牛顿第二定律得:F-mAg=mAv2AR

如图所示,弧AB是半径为R的1/4圆弧,在AB上固定一个光滑的木板DB.一质量为m,

1/2mv2=mgul可得B处速度:根号2guL.所以高度为UL.由几何性质BD的水平距离:[根号2URL-(UL)2]设为d.之后就是一些简单的计算了.

如图所示,AB与CD为两个斜面,分别与一个光滑的圆弧形轨道相切,圆弧的圆心角为θ,半径为R,质量为m的物块在距地面高为h

物块在斜面AB和CD上往复运动,摩擦力的方向不断变化,由于摩擦阻力做功,物块每次上滑的最高点不断在降低,当物体在B点或C点速度为零时,便在光滑曲面上往复运动,高度不再变化.设物块在斜面上(除圆弧外)运

如图所示,光滑圆弧轨道固定在竖直平面内,半径R=1m,对应的圆心角为106度,两端B、D的连线水平,现将质量m=1kg的

(1)由h=gt^2/2       得到t=0.4s(2)如图所示,到达B点时竖直方向的速度Vy^2=2gh &nbs

如图所示半径为R的1\4光滑圆弧轨道最低点D与水平面相切再D点右侧L0=4R 处用长为R的细绳将质量为m的小球B

解析:设A与B碰前速度为vA,碰后A的速度为v1,B的速度为v2,则A与B碰撞过程有:mvA=mv1+mv2④(1/2)mvA²=(1/2)mv1²+(1/2)mv2²⑤

如图所示,AB是半径为R的1/4光滑圆弧轨道(高二物理会考)

设物体质量m,在b点物体受力为重力mg,轨道支撑力3mg,所以向心力f=2mgf=mv^2/r=2mg,而a1=v^2/r所以a1=2gv=√2gr刚离开时,只受重力,所以a2=g因为是平抛运动,t=

如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物

(1)因为摩擦始终对物体做负功,所以物体最终在圆心角为2θ的圆弧上往复运动.对整体过程由动能定理得mgR•cosθ-μmgcosθ•x=0所以总路程为x=Rμ.(2)对B→E过程,由动能定理得mgR(

如图所示,A、B为两个相同的1/4光滑圆弧轨道固定在水平面上,两圆弧半径均为R=1.8m,

这道题并不难,关键是做好受力分析(1)小物块通过圆弧轨道A的最低点时对轨道的压力对木块在轨道A最低点点进行受力分析(重力G支持力N,轨道光滑无摩擦)G=mg由于做圆周运动,N-G=mv²/R

如图所示,左端带有半径为R的四分之一圆弧的光滑轨道静止于光滑的水平面上,轨道右端安装了一个减振装置,光滑轨道的质量为2M

(1)对小球A下滑的过程,由动能定理得:MgR=12Mv02-0对小球A在最低点受力分析,由牛顿第二定律得:FN-Mg=Mv02R解得:F=3Mg,由牛顿第三定律可知,A球对轨道压力大小为3Mg.(2

一半径为R =25 m的四分之一光滑圆弧轨道,其下端与很长的水平雪道相接,如图所示,滑雪运动员在光滑圆弧轨道的顶端以水平

这个题没那么复杂,不需要用那么复杂的公式去解的,题目前面啰嗦那多,就是想说明运动员在光滑圆弧轨道上没有能量损失,所以这个题用机械能守恒定律去解就非常简单了:运动员的重力势能+初动能=摩擦力作功,设运行

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用

如图所示,小球A从半径为R=0.8m的1/4光滑圆弧轨道的上端点以v0=3m

1.正电荷2.你先受力分析下可得方程tanθ=E*q/(m*g)可求出E=mgtanθ/q

如图所示,半径为R的光滑四分之一圆弧轨道静止在光滑水平面上,轨道质量为M,现将一

(1)以小球和轨道为系统,在水平方向合外力为零动量守恒(竖直方向合外力不为零动量不守恒)只有重力做功机械能守恒(2)小球沿轨道下滑过程中,轨道对小球的支持力与轨迹的夹角》90^0做负功.(3)小球滑到

如图所示,质量为m的滑块从半径为R的光滑固定的圆弧形轨道的a点滑到b点,下面正确的是(  )

滑块从光滑圆弧轨道的a点滑到b点,速度越来越大,根据Fn=mv2r知,向心力逐渐增大,根据a=v2r知,向心加速度逐渐增大.故B正确,A、C、D错误.故选:B.

如图所示,一平板小车静止在光滑的水平地面上,车上固定着半径为R=0.7m的四分之一竖直光滑圆弧轨道,小车与圆弧轨道的总质

(1)当v0=3m/s时,滑块在B处相对小车静止时的共同速度为v1,由动量守恒定律:mv0=(M+m)v1…①对滑块,由动能定理:-μmg(s+L)=12mv21-12mv20…②对小车,由动能定理: