如图所示,将半径为R的半圆以直径AB所在直线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:58:33
如图所示,将半径为R的半圆以直径AB所在直线
如图所示,有一个沿水平方向作匀速直线运动的半径为R的半圆柱体,半圆柱面上搁着一个只能沿竖直方向运动的竖直杆(  )

杆子的实际速度是接触点沿切线方向的速度与半圆柱速度的合速度,如图,根据速度的合成,运用平行四边形定则,得v杆=vtanθ.A、杆向上运动,θ角减小,tanθ减小,v杆=vtanθ减小,但杆不作匀减速运

如图所示,光滑水平面右端B处连接一个竖直的半径为R的光滑半圆轨道,在离B距离为x的A点,用水平恒力将质量为m的质点从静止

(1)质点从半圆弧轨道做平抛运动又回到A点,设质点在C点的速度为vC,质点从C点运动到A点所用的时间为t,在水平方向x=vCt竖直方向上2R=12gt2,解①②式有vC=x2gR对质点从A到C由动能定

如图所示,一个光滑的水平轨道与半圆轨道相连接,其中半圆轨道在竖直平面内,半径为R,质量为m的小球以

小球通过轨道的最高点B后恰好做平抛运动:根据h=1/2gt²,落地时间t=√(2h/g)=√(2×2R/g)=2√(R/g)根据平抛运动的水平位移:L=vB×tB点速度:vB=L/t=2R/

如下如图所示,光滑圆管轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r

/>1.当到达最高点时,速度可以为0这时,刚好能够到达最高点.mV^2/2=mg2R得V=2√(gR)2.当对下底面有压力时,mg-F=mV'^2/RmV^2/2-mV'^2/2=mg2R得V=√[5

如图所示,ABC是光滑的轨道,其中AB是水平的,BC为竖直平面内的半圆,半径为R,且与AB相切.质量m的小球在A点以初速

从A到C的过程中运用动能定理得:12mvC2-12mv02=-mg2R解得:vc=v20-4Rg(2)在C点根据向心力公式得:Nc+mg=mvc2解得:Nc=mv20R-5mg (3)小球离

(2011•安徽模拟)如图所示,一水平直轨道CF与半径为R的半圆轨道ABC在C点平滑连接,AC在竖直方向,B点与圆心等高

(1)设乙与甲碰前瞬间速度为v1,碰后瞬间速度为v2,甲乙一起返回到D时速度为v3.乙从B到D有 mgR−umgL1=12mv12 ①碰撞过程由动量守恒得  &

如图所示,物体A、B的质量分别为m、2m,物体B置于水平面上,B物体上部半圆型槽的半径为R,将物体A从圆槽的右侧最顶端由

A、设A到达左侧最高点的速度为v,根据动量守恒定律知,由于初动量为零,则末总动量为零,即v=0,根据能量守恒定律知,A能到达B圆槽左侧的最高点.故A错误.B、设A到达最低点时的速度为v,根据动量守恒定

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用

求均匀半圆弧的重心位置,半径为R

设重心离此半圆弧的圆心的距离为x,将此圆弧饶两端点所在直线旋转一周形成一球面,则此球面面积S=圆弧长l*重心移动距离r=πR*2πx=4πR^2,解得x=2R/π.故半圆弧的中心位置在其对称轴上圆心与

如图所示,质量为m的小球沿半径为R的光滑半圆球形碗的内表面以周期T在某一水平内做匀速圆周运动,求小球做匀速圆周运动的水平

质量为m的小球沿半径为R的光滑半圆球形碗的内表面以周期T在某一水平内做匀速圆周运动,做匀速圆周运动的水平面离碗底的高度h.则匀速圆周运动的平面至球心(碗的上平面)的距离为R-h小球做匀速圆周运动的半径

如图所示,将电阻为R的均匀裸导线首尾相接形成一个半径为r的导体圆环,环上放着两根电阻不计的足够长的平行直导线a、b,相距

当两根导线分别位于中间位置及与圆相切的位置时,内侧弧的长度最大,即14圆周,此时a、b间电阻值最大,即12×14R=18R;当两根导线分别距圆心为12r时,内侧弧的长度最小,即16圆周,此时a、b间电

如图所示,半径为R的半圆光滑轨道固定在水平地面上.A、B点在同一竖直直线上.

(1)小球从B到C,平抛运动时间t=√2h/g=√4r/g水平速度v0=AV/t=2r/√4r/g=√rg在B点使用向心力公式mg+FN=mv0^2/rFN=mv0^2/r-mg=mrg/r-mg=0

如图所示,半径为R的半圆凸轮以等速v0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为顶点.

v0^2*cosα/R,使用凸轮做参照物可所以算出,或者使用微积分再问:题目搞错了半圆凸轮以等速v0沿水平面改为以a为加速度向右移动,此时的速度为v0再答:chav0^2*cosα/R-a*tanα再

如图所示,半径为R的光滑半圆环AB竖直固定在光滑水平地面上,质量为m的小球以某一速度υ0从A点进入半圆环,经最高点B水平

(1)在A点,根据向心力公式得:F向=mv02R(2)△Ep=mg•2R=2mgR(3)小球由A到B过程,根据动能定理有:-mg•2R=12mvB2-12mv02解得:vB=v02−4gR小球从B点抛

一个半圆面,半径为r,它的周长是

是一条线沿一个圆的圆心(任意一条线)分成两块也是一个圆的面积的一半这就是一个圆的面积的一半

一个半圆面 半径为r 它的周长是什么?

选A很高兴为您解答,67320163为您答疑解惑如果本题有什么不明白可以追问,