如图所示,已知AB为⊙O的直径,AD是弦,E是圆O外一点,作
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:14:36
解析:(1)连接OC,由AD=13BD知,点D为AO的中点,又∵AB为圆的直径,∴AC⊥BC,∵3AC=BC,∴∠CAB=60°,∴△ACO为等边三角形,∴CD⊥AO.∵点P在圆O所在平面上的正投影为
(1)证明:连接OC,∵AB为⊙O的直径,CD是弦,且AB⊥CD于E,∴CE=ED,CB=DB.(2分)∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)
(1)因为OA=OC所以∠ACO=∠A因为∠A∠B=90°(直径所对圆周角为直角)又因为∠BCD∠B=90°所以∠A=∠BCD连结B,D,易证∠BCD=∠BDC所以∠A=∠BDC又因为∠ACO=∠A所
太简单了(1)连接CB因为AB是直径所以角ACB=90度因为角CAB=角CAB,角ACB=角AHC=90度所以三角形ACH相似于三角形ABC所以AC:AB=AH:AC所以AH*AB=AC^2(2)连接
解:(1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF⊂平面ABEF,∴AF⊥CB,又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面C
(1)第一空填等腰直角(2)问题二:AE=BF证:连结PE、BP和AP,由同弧所对圆周角相等得∠PEQ=∠PFQ,∠PBQ=∠PAQ,由P为AB弧的中点得AP=BP得△APE全等于△BPF,得AE=B
(1)连接ac.co∴co=4∵cd⊥ab∴ch=hd=2根号3在△cho中,co^2=ho^2+ch^2∴ho=2∴∠coh=60°∵co=ao∴△cao为正三角形∴∠bac=60°(2)∵e为弧a
(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC-AD=6,∴DC2=62+82=100,即DC=10.(1分)设AD=x,则DE=AD=x,EC=BC=x+6,∴x+
证明:因为AB、CD是圆O的直径,所以∠AOC=∠EOBAO=BOCO=EO△AOC≌△EOB所以AC=EB连接OD因为CD是圆O的弦,所以OD是圆O的半径因为CD∥AB所以OC=ODAO=BO∠AO
因为三角形ABC是等边三角形所以角B=角C=60度因为OB=OD=OC=OE所以三角形BOD和三角形COE都是等边三角形所以角BOD=角EOC=60度所以角DOE=180-60-60=60度再问:(2
设直线CD交小圆于M、交圆O于N.因为AB为圆O的直径,C为圆O上的一点,CD垂直于AB于D所以CD=DNCD²=AD*BDCD=6CD=DN=CM=6由相交玄定理得PE×EQ=ME×DE=
证明:(Ⅰ)连接OC,如下图所示:因为OA=OC,所以∠OCA=∠OAC又因为AD⊥CE,所以∠ACD+∠CAD=90°,又因为AC平分∠BAD,所以∠OCA=∠CAD,所以∠OCA+∠CAD=90°
再答:�Լ����������£�˼·��������
证明:连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵是切线切线,AB
已知,EA=EC,可得:∠ACE=∠CAE.CD是AB的垂直平分线,可得:AC=BC,则有:∠BAC=∠ABC.在△ACE和△ABC中,∠ACE=∠CAE=∠BAC=∠ABC,所以,△ACE∽△ABC
这个只需要证明角ODE是直角就可以了,AB=AC角ABC=角ACB且AD垂直AC所以角ADC=90°又因为DE垂直AC所以角AED=90°角A是公共角,所以有角ADE=角ACB=角ABCOA=OC所以
证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC
第一题:∵AB是直径,C是圆上一点,那么∠ACB是直角.又∵BC=√3AC∴∠ABC=30∴∠BAC=60AC=1/2AB=2又∵AD=1/4=1∴∠ACD=30因此可以推出∠ADC=180-∠BAC
图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,