如图所示,抛物线y=-1 2x2 根号2 2 2与x轴交于ab两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:14:04
如图所示,抛物线y=-1 2x2 根号2 2 2与x轴交于ab两点
已知:抛物线y=-3x2+12x-8.

(1)y=-3x2+12x-8=-3(x2-4x)-8=-3(x-2)2+12-8=-3(x-2)2+4,函数y=-3x2+12x-8的对称轴为x=2,顶点坐标为(2,4).(不用配方法不给分)(2分

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

√(1)、由y=x2-1知A(-1,0)、B(1,0)、C(0,-1).(2)、由A(-1,0)、B(1,0)、C(0,-1)可求出BC直线为y=x-1,从而设AP直线为y=x+b,将A(-1,0)代

如图所示,抛物线y=x2与直线y=2x在第一象限内有一个交点A.

(1)解方程组y=x2y=2x得x=0y=0或x=2y=4,所以A点坐标为(2,4);(2)存在.作AB⊥x轴于B点,如图,当PB=OB时,△AOP是以OP为底的等腰三角形,而A(2,4),所以P点坐

抛物线y=12

抛物线y=12(x-3)2的顶点坐标为(3,0).故答案为:(3,0).

已知抛物线二次函数Y=x2+KX+9

Y=x2+KX+91、当K为何值时,对称轴为Y轴对称轴是Y轴则,k=02、当K为何值时,抛物线与X轴有两个交点与X轴有两个交点则△=k^2-36>0即k>6或k

求抛物线y=x2过点(52

设切点坐标是(a,a2),∵y=x2,∴y′=2x,∴k=2a=a2−6a−52,整理得a2-5a+6=0,解得a=2或a=3;当a=2时,k=4,此时切线方程是4x-y-4=0;当a=3时,k=6,

抛物线y=-12

∵抛物线y=-12(x+1)2-1,∴抛物线y=-12(x+1)2-1的顶点坐标为:(-1,-1).故答案为:(-1,-1).

抛物线y=2x2的对称轴为______.

∵抛物线y=2x2中,a=-2,b=0,∴对称轴为x=-b2a=0,即为y轴.

已知抛物线y=x2+2mx+n的顶点在直线y=-12

∵y=x2+2mx+n=(x+m)2-m2+n,∴抛物线的顶点坐标为(-m,-m2+n),∴-12×(-m)+12=-m2+n,即2m2+m-2n+1=0①,∵抛物线过点(1,3),∴2m+n+1=3

抛物线y=-x2+bx+c的图象如图所示,则此抛物线的解析式为______.

据题意得−b−2=1−9+3b+c=0解得b=2c=3∴此抛物线的解析式为y=-x2+2x+3.

将抛物线y=2x2-12x+16绕顶点旋转180度,所得抛物线解析式是

整理y=2(x2-6x+8)y=2(x2-6x+9-1)y=2(x-3)方-2所以顶点坐标为(3,-2)绕顶点旋转180,只是开口方向发生了改变即y=-2(x-3)方-2展开即可

已知抛物线y=-x2+2x+2,

(1)∵抛物线y=-x2+2x+2中,a=-1,b=2,c=2,∴该抛物线的对称轴x=-b2a=-2−2=1,定点的纵坐标为:4ac−b24a=−8−4−4=3,∴该抛物线的对称轴是x=1,顶点坐标是

已知抛物线y=-x2+2x+2

(1)∵y=-x2+2x+2=-(x2-2x+1-1)+2=-(x-1)2+3,∴抛物线y=-x2+2x+2的对称轴为:x=1,顶点坐标为(1,3);(2)∵抛物线y=-x2+2x+2 的对

抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是多少?

y=-x2+bx+c,抛物线与x轴交点(-2,0),(1.0)y=-(x+2)(x-1)=-x^2-x+2y>0,则x的取值范围是-2再问:后面是用不等式解出范围的么?再答:解一元二次不等式

抛物线y=x2+3x的顶点在(  )

将y=x2+3x变形,可得:y=(x+32)2-94,则顶点坐标为(−32,−94),则此点位于第三象限.故选C.

已知抛物线Y=-X2 (是X的平方)

方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(

(2013•长春一模)如图,抛物线y=x2,y=12x

∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴

(2012•邵阳)如图所示,已知抛物线C0的解析式为y=x2-2x

(1)∵y=x2-2x=(x-1)2-1,∴抛物线C0的顶点坐标为(1,-1);(2)①当y=0时,则有x2-2x=0,解得:x1=0,x2=2,则O(0,0),A1(2,0),∵将抛物线C0向右平移