如图所示,竖直面内有一固定圆环
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:54:59
以小环为研究对象,分析受力情况,如图.根据平衡条件得知,大圆环对小环的支持力N和弹簧的弹力F的合力与重力大小相等,方向相反,G′=G,根据△G′NB∽△ABO得:FG=ABAO又AB=2rcosφ,A
受力平衡时,小球动能最大.受力平衡时之前合力做正功动能增加,受力平衡之后合力做负功动能减少.设小球与竖直方向夹角为θ时,重力与弹力的合力等于电场力由三力平衡时的闭合三角形定则知受力如图:tanθ=Fm
由于看不到你的图,只能帮你算量值了(1)电压值:U=B*L*VL=2a所以U=2aBV电流方向请用右手定则判定电流值:I=U/r;r=2R+0.5R=2.5R;所以I=4aBV/5R(2)P=U*I=
A、圆环沿杆滑下,滑到杆的底端的过程中有两个力对圆环做功,即环的重力和弹簧的拉力;所以圆环的机械能不守恒,如果把圆环和弹簧组成的系统作为研究对象,则系统的机械能守恒,故A选项错误;B、当圆环沿杆的加速
小球沿圆环缓慢上移可看做匀速运动,对小球进行受力分析,小球受重力G,F,FN,三个力,满足受力平衡.作出受力分析图如下:由图可知△OAB∽△GFA即:GR=FAB=FNR;解得:F=ABRG=2cos
以箱子为研究对象,分析受力情况:箱子受到重力Mg、地面的支持力N和环对箱子向下的滑动摩擦力Ff,根据平条件得:N=Mg+f根据牛顿第三定律得箱对地面的压力大小:N′=N=Mg+f,所以选项C正确,选项
设细线中拉力在大小为T,设∠A=θ,小球匀速圆周运动的半径为r,根据勾股定理得:(2L-r)2=r2+L2解得:r=34L所以sinθ=r2L−r=35L54L=35cosθ=45对小球进行受力分析,
(1)环C在水平面内做匀速圆周运动,由于环光滑,所以环两端绳的拉力大小相等.BC段绳水平时,环C做圆周运动的半径r=.BC,则有:r2+(L2)2=(1.5L−r)2解得:r=2L3环的受力如图所示,
很难么当均匀电场通过圆环时将产生电磁场,这时没有一定的外力,光靠那点重力,圆环是不能往下滑的,如果不加电场,用圆环的本身质量乘以约9.8再减去摩擦力
设小球第4次、第5次、第6次经过轨道最低点时速度大小分别为v4、v5、v6.小球始终沿着圆周轨道做圆周运动,由于小球克服摩擦力做功,小球的机械能不断减小,经过轨道同一位置时小球的速度越来越小,所需要的
首先,A、B速率是相等的.因为轻杠是不能弯曲的,而A、B的速度方向始终是沿圆环的切线方向(且一直在圆环上运动),AB是圆环的割线,且长度是不变的,那么A、B的速率必然始终相等(否则轻杠会弯曲或者拉长)
在最高点,速度最小时有:mg=mv21r,解得:v1=gr.根据机械能守恒定律,有:2mgr+12mv12=12mv1′2,解得:v1′=5gr.在最高点,速度最大时有:mg+2mg=mv22r,解得
沿小球切线方向的力平衡mgsin2θ=Fsinθ,弹力沿弹簧反方向N+mgcos2θ=k(r-l)+Fcosθ
答:该位置M上到最高点,此时M的加速度向下,接下来M要向下运动(M在上下振动,这个位置不是平衡位置),所以此时T
A、弹簧弹力对圆环做功,圆环机械能不守恒,故A错误;B、弹簧的弹性势能随弹簧的形变量的变化而变化,由图知弹簧先缩短后再恢复原长最后伸长,故弹簧的弹性势能先增大再减小后增大才对,故B错误;C、整个系统机
由等效加速圆的定理如果B在圆上,那么A与B同时到达,而B在园外,所以A比B先到达,且A,D同时到达再来比较A和C由几何关系A与C在同一高度分解竖直方向的加速度有ac=gaa=gsin^2θ因为sin^
由等效加速圆的定理如果B在圆上,那么A与B同时到达,而B在园外,所以A比B先到达,且A,D同时到达再来比较A和C由几何关系A与C在同一高度分解竖直方向的加速度有ac=gaa=gsin^2θ因为sin^
以小环为研究对象,分析受力情况,如图.根据平衡条件得知,大圆环对小环的压力N和弹簧的弹力F的合力与力大小相等,方向相反,G′=G,根据△G′NP∽△APO得:FG=APAO 又AP=2Rco
珠子在电场力与重力的作用下运动,设其与竖直方向的夹角为θ,电场力做功为:W=Eqd=3mg(Rsinθ)/4重力做功为:WG=-mg(1-cosθ)R(注意,重力做的是负功)由动能定理:EK=Eqd+
如图对小环进行受力分析,如图所示,小环受上面绳子的拉力m1g,下面绳子的拉力m2g,以及圆环对它沿着OA向外的支持力,将两个绳子的拉力进行正交分解,它们在切线方向的分力应该相等:m1gsin180−α