如图所示,质量M=0.8的平板小车

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/27 19:28:32
如图所示,质量M=0.8的平板小车
如图所示,质量为m=1kg的滑块,以vo=5m/s的水平初速度滑上静止在光滑水平面上的平板小车,若小车质量M=4kg,平

滑块受到向左的摩擦力,μmg=ma1,则a1=μg,向左小车水平方向受到向右的摩擦力,μmg=Ma2,则a2=0.25μg,向右注意此处我们以小车为参考系,则滑块的相对初速度为v0=5m/s,相对加速

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,物

小车和物块的运动情况如图所示,在物块运动到小车右端的过程中,小车发生的位移为x1,物块发生的位移为x2,取向右为正,以小车为研究对象,由牛顿第二定律得:μmg=Ma1…①由匀变速运动的公式得:x1=1

如图所示.质量为M的平板小车放有质量m=2kg的重物可视为质点,重物与车之间的动摩擦=

瞬移再问:我打个问题也不容易,不会做的或者捣乱的不觉得可耻吗再答:榆次了

如图所示,木块质量m=0.4kg,它以速度v=20m/s水平地滑上一辆静止的平板小车

知道木块初速度,以及两车达到相同时间的速度以及时间,那你很容易求出小车运动的路程以及木块运动的时间啊.本小问就是叫你求出木块和小车做相反运动运动路程的和啊

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,

小车静止在光滑水平面上,不受地面的摩擦力,只受小物块给小车的摩擦力,所以F1=μmg∵f=μmg=10N∴a(车)=f/M=1m/s∴x(车)=1/2*a*(t平方)=2m∴x(物)=x(车)+x=3

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,物

变化参考系的方法实在巧妙,但建议不要经常使用,牛顿运动定律常常以惯性系而言,对于非惯性系常常却又涉及另一些知识.首先呢,变换参考系,以B为参考系那么就假设他不动,A就具有一部分B速度,则在B参考系中A

木块A以V=5m/s的水平初速度滑上一辆静止在光滑水平面的平板小车B上,平板小车足够长 如图所示,已知A的质量M

1)设木块A与小车B相对静止时的速度为V'M1V=(M1+M2)V'V'=[M1/(M1+M2)]V=[0.4/(0.4+1.6)]*5=1m/sA与B之间的摩擦力f=uM1*g=0.2*0.4*10

如图所示,水平平板小车质量为m=2kg,其上左端放有一质量为M=6kg的铁块,铁块与平板车间的动摩擦因数μ=0.5,今二

①取平板车与铁块为研究系统,由M>m,系统每次与墙碰后m反向时,M仍以原来速度向右运动,系统总动量向右,故会多次反复与墙碰撞,每次碰后M都要相对m向右运动,直到二者停在墙边,碰撞不损失机械能,系统的动

动量守恒定律碰撞问题如图所示,在长为2m,质量m=2kg的平板小车的左端放有一质量为M=3kg的铁块,两者之间的动摩擦因

1)用Vt^2-V0^2=2aSa=uMg/mVt=3联立得S=0.3m3)由于小车与地没有摩擦,且碰撞时候没有能量损失,最后系统所有的动能全部转换成摩擦生热,所以可由其算出相对位移uMgs=1/2m

如图所示,一质量M=50kg、长L=3m的平板车静止在光滑的水平地面上,平板车上表面距地面的高度h=1.8m.一质量m=

①对滑块,μmg=ma1,a1=μg=5m/s2对平板车,μmg=Ma2,a2=μmgM=1m/s2②设经过t时间滑块从平板车上滑出.x块1=v0t1−12a1t21  x车1=1

如图所示,质量M=100kg的平板车静止在水平路面上,车身平板离地面的高度h=1.25m.质量m=50kg的小物块(可视

(1)(2)由牛顿第二定律得:对物块:μmg=ma,a=2m/s2,对小车:F-μ(m+M)g-μmg=Ma′①,物块的位移:s=12at2②,小车位移:s0=12a′t2③,物块从小车上滑落时:s0

如图所示,在光滑水平面上有一辆质量M=4Kg的平板小车,车上的质量为m=1.96Kg的木块,

很明显你的题缺少一个条件,木块与小车之间的摩擦系数u,你可能漏发了?第一问求出的速度肯定是一个范围,子弹速度有最大值,如果超过这个最大值,不能满足条件.第二问,利用上述求出的速度大小,给你一个思路自己

如图所示,质量为M的平板小车停在光滑水平地面上,一质量为m的滑块以初速度v0=3m/s

【解析】这道题目可以用相对运动来做,m刚上M时,相对速度是V0,关键是要求出相对加速度的大小是两个加速度相加,注意对于两个物体水平上的受力都是μmg,再分别除以各自的质量得出加速度,而他们的相对加速度

如图所示,长为2L的板面光滑且不导电的平板小车C放在光滑水平面上,车的右端有档板,车的质量m C =4m.今在静止的平板

(1)由动能定理,得到qEL=12mv20,解得E=mv202qL,因而电场力向右且带正电,电场方向向右即匀强电场的场强大小为mv202qL,方向水平向右.(2判断A第二次与B相碰是在BC碰后还是碰前

如图所示,在倾角θ=37°的固定斜面上放置一质量M=1kg、长度L=3m的薄平板AB.平板的上表面光滑,其下端B与斜面底

对平板,由于Mgsin37°<μ(M+m)gcos37°,故滑块在平板上滑动时,平板静止不动.对滑块:在薄板上滑行时加速度a1=gsin37°=6m/s2,到达B点时速度  &nb

如图所示,质量为m的小球与穿过光滑水平板中央小孔O的轻.

1)若将绳子从这个状态迅速放松,后又拉紧,使小球绕O做半径为b的匀速圆周运动,则从绳子被放松到拉紧经过多少时间?设:经过的时间为:t,绳子从这个状态迅速放松,后又拉紧这个过程中,小球沿圆周切线方向做匀

光滑水平面上有质量为M的长平板A,如图所示,平板上放以

由动量定理知(F-umg)t=mv即v=(F-umg)t/m所以对B做的功为W=mvv/22)由umgt=MV即V=umgt/M所以对A做功为W=MVV/23)先求B位移即L=(F-umg)tt/2m

如图所示,在倾角θ=37°的固定斜面上放置一质量M=1kg、长度L=3m的薄平板AB.平板的上表面光滑,其下端B与斜面底

滑块加速度:mg*sin37°/m=6m/s²滑块对平板压力:mg*cos37°=4.8N平板对斜面压力:Mg*cos37°+4.8N=12.8N平板延斜面向下的力:Mg*sin37°=6N

平板小车质量M=8kg,平板长度l=1m,静止在光滑的水平地板上.

在整个运动过程中,滑块和小车组成的系统水平方向没有受到外力的作用,设小车的速度为v动量守恒:v0*m=v1m+Mvv=(v0-v1)m/Mv=3*4/8v=1.5(m/s)再问:没学动量守恒,只学了动