如图所示,轻质杠杆OA可绕O点转动,杠杆长为0.2m,在它的中点B处挂一重30N

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:04:57
如图所示,轻质杠杆OA可绕O点转动,杠杆长为0.2m,在它的中点B处挂一重30N
如图所示的轻质杠杆可绕o点自由转动,已知OA=60cm,OB=40cm,BC=30cm,A端所挂重物G=40N.

看看这个题是不是:http://www.wuliok.com/article-4467708-1.html

如图所示,轻质杠杆OA可绕O点转动,杠杆长0.2m,在它的中点B处挂一重30N的物体G.若在杠杆上A端施加最小的力F,使

如图,为使拉力最小,动力臂要最长,拉力F的方向应该垂直杠杆向上,即竖直向上,动力臂为OA最长,∵杠杆在水平位置平衡,∴F×OA=G×OB,∴F=G×OBOA=30N×12=15N.故答案为:向上,15

如图所示,轻质杠杆OA长50厘米,可绕支点O转动,A端有细线竖直向上拉着,离O点30厘米

(1)用杠杆平衡原理,10×30=F*50可得,F=6N(2)由第一问可知F1的分力F始终不变,当夹角变大时,力F1变大

轻质杠杆OA长50厘米,可绕支点O转动,A端用细线竖直向上拉着,拉力大小为1.2牛,离O点30厘米处B点挂一重为20牛的

拉力不是1.2N.是12N吧?若拉力方向向右倾斜,力臂变小,若仍保持杠杆平衡,则拉力一定变大

1.轻质杠杆OA可绕O点转动,杠杆B处悬挂一个小球G,在A端始终施加一个竖直向上的拉力,使杠杆从图示位置缓缓转动至水平位

第一题应该选择A保持不变应该用整体法考虑一杆做研究对象她受到F和G别的没有力而G始终不变所以F也始终不变2这个力应该做功因为水平而且是直道说明F和S平行W=F*S*COS@

如图所示,轻质杠杆OA可绕O点转动,OA=0.3m,OB=0.2m,在A点处挂有一个质量为2Kg的物体G,在B点处加一个

物体的重力G=mg=2kg×9.8N/kg=19.6N;由杠杆平衡的条件可得:F×OB=G×OA,即F×0.2m=19.6N×0.3m,解得:F=29.4N.答:物体G的重力是19.6N,力F为29.

人们使用定滑轮组的目的是______,如图所示,轻质杠杆AB可绕固定点O在竖直平面内自由转动,A端用细绳通过滑轮悬挂着底

定滑轮的作用是改变力的方向;∵当工人在B端施加一个大小为650N竖直向上的推力时,重物对地面的压力恰好为零,∴此时在A点施加的拉力等于物体的重力,因此OA×G=OB×FB1,代入数值得:OA×G=OB

(2011•房山区二模)如图所示,轻质杠杆AB可绕固定点O在竖直平面内自由转动,A端用细绳通过滑轮悬挂着底面积为0.02

∵当工人在B端施加一个大小为650N竖直向上的推力时,重物对地面的压力恰好为零,∴此时在A点施加的拉力等于物体的重力,因此OA×G=OB×FB1,代入数值得:OA×G=OB×650N;①∵当推力变为4

如图所示 轻质杠杆OA可绕O点转动,OA=0.3m,OB=0.2m.在A点出挂有一个质量为2kg的物体,在B点出加一个竖

G=mg=2kg×9.8N/kg=19.6N根据杠杆平衡条件:F×l=G×l'F=G×(l'/l)=G×(OA/OB)=19.6N×(0.3m/0.2m)=29.4N根据相似三角形对应边成比例

如图所示,一轻质杠杆OA可绕O点无摩擦转动,A端用绳子系在竖直墙壁的B点,在杠杆的C点悬挂一重为20N的物体,杠杆处于水

(1)过支点O作垂直绳子对杠杆的拉力F作用线的垂线段(即力臂L).如图所示:(2)如上图所示,在Rt△OAD中,∠ODA=90°,∠DAO=30°,∴OD=12OA=12×50cm=25cm根据杠杆平

轻质杠杆OA可绕O点移动,OA=0.3m,OB=0.2m,A处挂一个质量为2KG的物体G,B点处加一个竖直向上的力F,杠

解题如下:物体重力=2Kg乘以9.8N/KG=19.6牛根据杠杆原理动力x动力臂=阻力X阻力臂列式为19.6NX0.3m=0.2mFF=29.4N所以物体的重力为19.6牛,力F的大小为29.4N

如图所示,轻质杠杆OA可绕O点转动,杠杆长0.2米,在它的中点B处挂一重30牛的物体G.若在杠杆上A端施加最小的力F,使

如图,为使拉力最小,动力臂要最长,拉力F的方向应该垂直杠杆向上,即竖直向上,动力臂为OA最长,∵杠杆在水平位置平衡∴F1L1=F2L2F1×0.2m=30N×0.1m   

如图所示,一轻质杠杆OB可绕O点转动,在杠杆上的A点和B点分别作两个力F1和F2,是杠杆保持水平平衡,已知OA:AB=1

1.F1L1=F2L2.F2=F1L1\L2,=12N*1\2=6N2.F1L1=F2L2.L2=F1L1\F2,6N*1\6N=1即F2的方向为竖直向下.

如图所示的轻质杠杆OA上悬挂着一重物G,O为支点,在A端用力使杠杆平衡.下列叙述正确的是(  )

A、因无法确定动力臂的大小,所以无法确定它是哪种杠杆,故A错误;B、沿垂直杠杆向上的方向用力,动力臂最大,动力最小,最省力,故B错误;C、因此杠杆的动力臂无法确定,所以它可能是省力杠杆,也可能是费力杠

如图所示,轻质杠杆可绕O转动,在A点始终受一垂直作用于杠杆的力,在从A缓慢转动A’位置时,力F将(  )

在转动过程中,力F的力矩克服重力力矩而使杠杆运动,可认为二力矩相等,重力不变,而重力的力矩在杠杆水平时最大,力矩最大,所以说从A到A′过程中重力力矩先变大后变小,而F的力臂不变,故F先变大后变小.故选

如图所示,一轻制杠杆OA可绕O点转动,A端用绳子系住...

1:20cm2:600N要解释的话HI百度留言.祝您成功

如图所示OA是一根粗细均匀的杠杆(杆重不计),可绕O点转动,在A端挂一个铁块,弹簧测力计挂在杠杆的 中心B处,当杠杆在水

因为ob等于0.5oa所以F弹=3.9=2G铁所以G铁=1.95N又因为ρ铁=7.8*1000kg/立方米所以V铁=G/(g*ρ)=0.000025立方米所以F浮=V铁*ρ水*g=0.000025*1

一根轻质杠杆可绕O点转动,在杠杆的中点挂一重物G,在杆的另一端施加一个方向始终保持水平的力F,如图所示,力F使杆从所示位

F的力臂明显是减小的重力G铭心啊是不变的重力的力臂是增大的GLg=FLf所以F变大选AD