如图所示PA平面ABCD,ABCD为矩形,PA=PD,M.N分别是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:51:12
证明:(1)设PD的中点为E,连接AE、NE,由N为PC的中点知EN∥.12DC,又ABCD是矩形,∴DC∥.AB,∴EN∥.12AB又M是AB的中点,∴EN∥.AM,∴AMNE是平行四边形∴MN∥A
1证:在PD上取中点H,连接NH,HAHN=1/2CD=1/2AB=AMHN‖CD‖AB‖AM∴四边形AMNH为平行四边形∴AH‖MN又∵MN不∈平面PAD,AH∈平面PAD∴MN‖平面PAD2证:△
证明面与面垂直,只要证一个面内的一条线与另一个面垂直即可,题中PA⊥平面ABCD,所以PA⊥CD,又CD⊥AD,所以CD⊥面PAD,又CD在面PDC中,所以平面PDC⊥平面PAD
选PB中点G,连接EG,FG,显然有EG||AP,FG||BC,即FG||AD,所以平面EFG平行平面PAD,所以EF平行PAD.PA垂直ABCD,所以PA垂直CD,又CD垂直AD,所以CD垂直平面P
所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点.求证,1,PA平行平面BDE.知道手机网友你好:你要发布问题,就把问题发完整.问的题目是什么,写清楚.以免浪费短信费
将其还原成正方体ABCD-PQRS,连接SC,AS,则PB∥SC,∴∠ACS(或其补角)是PB与AC所成的角,∵△ACS为正三角形,∴∠ACS=60°,∴PB与AC所成的角是60°,故答案为:60°
连接AQ,取AD的中点O,连接OQ.∵PA⊥平面ABCD,PQ⊥DQ,由三垂线定理的逆定理可得DQ⊥AQ.∴点Q在以线段AD的中点O为圆心的圆上,又∵在BC上有且仅有一个点Q满足PQ⊥DQ,∴BC与圆
考点:平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的性质专题:证明题分析:(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行即可,设PD的中点
(1)作AE⊥PD并交PD于E点.连接BE.因为四边形ABCD是正方形,PA⊥平面ABCD且PA=AB,所以AB=AD=PA且∠PAD=RT∠,则△PAD是等腰直角三角形,则AE=AD/根号2.又因为
你要求什么呢?再问:PA=AD=DC=1,AB=2,��һ����֤:MC//ƽ��PAD再答:���������������ðɣ�再答:M�������再问:MΪPB�е�再问:再答:��һ�ᰡ再
数学方法:PA^2+AQ^2=PQ^2PA^2+AD^2=PD^2QC^2+CD^2=QD^2若PQ垂直于QD,则有上述三式的右边有平方和满足勾股定理.设出点CQ坐标,可得出上述三式中左边后有量.故可
取PD的中点O,连接AO、NO、MNPA⊥平面ABCD,则PA⊥CD,矩形ABCD中,AD⊥CD,可知CD⊥平面PAD可知CD⊥AO,而PA=AD,PA⊥AD,则在等腰直角三角形PAD中,斜边上的中线
(1)由已知易得AC=2,CD=2.(1分)∵AC2+CD2=AD2,∴∠ACD=90°,即AC⊥CD.(2分)又∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.(3分)∵PA∩AC=A,∴C
PA⊥面ABCD,则PA⊥BC;ABCD是矩形,则AB⊥BC;所以BC⊥面PAB,所以BC⊥AE;PA=AB,点E是PB中点,则AE⊥PB;所以AE⊥面PBC;所以面ACE⊥面PBC.
1)45度(角BACBD⊥ACBD⊥PA)2)45度(角ADCAD⊥CDPD⊥CD)3ACBD交于OPB//EOPB//平面ACE.
辅助线:连接AC,并取AC中点为O;连接FO,EO证明:E为AB中点(1)O为AC中点(2)(1)(2)==>EO//BC(3)平面ABCD为矩形==>BC//AD(4)(3)(4)==>EO//AD
PA垂直于面ABCD,可知BA垂直于PA,又因角BAD为90度,故BA垂直于面PAD,推断出AE为BE在面PAD上的投影,故角BEA即为所求,由前可知BA垂直于PD,又因BE垂直于PD,故PD垂直于面
延长CM 交DA延长线于点EPE为面PCM 与面PAD的交线(PE显然即在面PAD中又在面PMC中)易证M为CE中点与是MN//PE(中位线)于是(1)得证PA垂直底面,所心PA垂直CDCD垂直AD所
ABCD是矩形,AD=AB &nb