如图所示一平面简谐波在t=0时的波形图,则O点的振动方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:38:31
由图可知波长为20,振幅是0.02,由于波速是5,故周期是4s,故角频率是2π/4=π/2,由于t=3s时x=0在负向位移最大处,且此波沿x轴正向传播,故可知t=0时x=0处质点在原点处且沿y轴正向运
x=0.24cos(wt+ψ)当t=0时,x=-0.12∴0.24cosψ=-0.12cosψ=-0.5ψ=(2π)/3或(4π)/3所以初相位为(2π)/3或(4π)/3
(1)y=0.04cos[2π(5t+x/0.4)-3/2π](2)y=0.04cosπ(2t/5+1/2)
分析:从图示可知,O点在t=0时y=0,过一段极小时间后,y>0,所以可知O点的振动方程是y=A*sin(ωt)周期 T=入/u=4/200=0.02秒ω=2π/T=2π/0.02=100π弧度/秒即
周期0.2s,2.5s包含12.5个周期,1个周期内该点路程0.2m;2.5s后该点仍然处于原位,因此路程2.5m,位移0m再问:老师对这一类的问题还不大懂,周期是=波长/波速=0.4/2=0.2s是
1、在t=1/2时刻,y=4.0×10^-2cos(πt-(π/2))=y=4.0×10^-2cos0º=4.0×10^-2m,该点处于最大位移处,速度为0.2、周期T=2s①若A在前B在后
根据微移法(由于波向右传播,将波形向右移动一小段距离,可以看到O点向下移动)或者“阴盛阳衰准则”(将波传播方向的箭头看做阳光照射的方向,波峰的两个面有一个面是正对阳光的,称为阳面,另一个背对的称为阴面
(1)波动方程y=0.1cos(4πt+π/2+2πx)m(2)φa-φb=π/2
1),∵t=0时质元由平衡位置向正方向移动,∴设波函数为:f(x,t)=Asin[(2π/T)t-(2π/λ)x+φ],其中f(x,t)表示x处质点在t时刻的位移.只需确定初项φ,∵v=ðf/
因△t=2.5秒,故△t/T/2=25,则s=2A・25=2×5cm×25=250cm因为质点M初始时刻在平衡位置,每经过半个周期又回到平衡位置,2.5秒相当于25个半周期,所以末时刻质
由图,此时原点处于平衡位置向上运动,也就是相位为-π/2.又波长为2b,即ω=2πf=2πu/2b=πu/b综上选D再问:还是没明白,初相位怎么弄出来的啊·求详解。再答:初相位可以通过旋转矢量法,或者
求振动方程,二次对T求导,代入T再问:没听懂呵呵不是只有振动方程才二次求导吗?这个波动方程怎么转换为振动方程啊?再答:设振动方程的标准式,由波动方程可得点,代入可解振动方程..........
该质点的位移表示为:x=Asin(ωt+φ)=Asin(2π/T+φ)∵在这里,A=0.2m;T=4s;φ=0.∴x=0.2sin(2π/4)=0.2sin(π/2)
一平面简谐波沿0x轴传播==〉公式方向沿x轴正方向(波的方向可能变,看公式中的符号)原式可化为:y=5cos(8*(t+3x/8)+π/4)对比波的标准表达式ψ=Acos(w(t-x/u)+φ)w=2
波有波峰和波谷,这句话表示在距原点O为波长/4处,波处于波峰位置.这样,你也就知道了在原点位置处,质元处于0位,振动方向向负方向
再问:在0.2那里再答:位移为零
这个文档的六七页就是解析,很详细哦!
波长为0.4m;振幅为0.04m,v=λff=v/λ=0.08/0.4=0.2HzT=1/f=5s角频率ω=2πf=0.4π,初相位为-πy=0.04sin(0.4πt-π)或者初相位为πy=0.04
假设时间由t=0经过Δt(Δt很小)后,即t=Δt对质点P,y=Asin5πt=y=Asin5πΔt其中,由于Δt很小且为正值,sin5πΔt>0,所以y的正负与A相同当A>0时,y>0,说明P在t=