如图所示一平面简谐波沿x轴负方向传播波速为u若p处质元
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:16:48
由图可知波长为20,振幅是0.02,由于波速是5,故周期是4s,故角频率是2π/4=π/2,由于t=3s时x=0在负向位移最大处,且此波沿x轴正向传播,故可知t=0时x=0处质点在原点处且沿y轴正向运
x=0.24cos(wt+ψ)当t=0时,x=-0.12∴0.24cosψ=-0.12cosψ=-0.5ψ=(2π)/3或(4π)/3所以初相位为(2π)/3或(4π)/3
t=0,x=0.1直接代入即可2/3pai
DX=0处的位移随时间的变化是C图明白吗?然后对位移求导即得速度与t的关系再问:能把式子列出来吗?听不太懂再答:恩,第一步明白吗?就像上面那个人说的那X=0处x=-A*Sint对t求导X‘=-A*Co
1.5πrad再问:A到B不是相差3/4个π吗再答:?怎么会是3π/4呢?是3/4个周期,一个周期是2π,所以是2π×3/4=3π/2rad
分析:从图示可知,O点在t=0时y=0,过一段极小时间后,y>0,所以可知O点的振动方程是y=A*sin(ωt)周期 T=入/u=4/200=0.02秒ω=2π/T=2π/0.02=100π弧度/秒即
1、在t=1/2时刻,y=4.0×10^-2cos(πt-(π/2))=y=4.0×10^-2cos0º=4.0×10^-2m,该点处于最大位移处,速度为0.2、周期T=2s①若A在前B在后
A、由于波向右传播,根据“上下坡”法,知道b质点向下振动,加速度正在增大.故A正确.B、T=λV=4200=0.02s,从图示时刻开始,经过0.01s,即半个周期,质点a通过的路程为2个振幅,即4m,
根据微移法(由于波向右传播,将波形向右移动一小段距离,可以看到O点向下移动)或者“阴盛阳衰准则”(将波传播方向的箭头看做阳光照射的方向,波峰的两个面有一个面是正对阳光的,称为阳面,另一个背对的称为阴面
Bv=波长/T=4m/st=x/v=1s再问:波长是两点最短直线距离。而不是两点间波浪的所有长度是吧再答:是的
1),∵t=0时质元由平衡位置向正方向移动,∴设波函数为:f(x,t)=Asin[(2π/T)t-(2π/λ)x+φ],其中f(x,t)表示x处质点在t时刻的位移.只需确定初项φ,∵v=ðf/
这道题可以用旋转矢量法来求首先令两个波的方程中的x=λ/4,得到改点处的振动方程,然后在以振幅为半径,矢量起点为圆心的圆中,规定一个正方向,然后,找出各自振动方程的初相位,画好后,将两个矢量利用平行四
由图,此时原点处于平衡位置向上运动,也就是相位为-π/2.又波长为2b,即ω=2πf=2πu/2b=πu/b综上选D再问:还是没明白,初相位怎么弄出来的啊·求详解。再答:初相位可以通过旋转矢量法,或者
由振动图像知初相为-π/2而反射波在O点的相位落后2L的距离加一个半波,即反射波初相为φ=-π/2-2π*2L/d-π=π/2-4πL/d反射波往x负方向传播,故y=Acos(ωt+2πx/d+φ)=
该质点的位移表示为:x=Asin(ωt+φ)=Asin(2π/T+φ)∵在这里,A=0.2m;T=4s;φ=0.∴x=0.2sin(2π/4)=0.2sin(π/2)
由图可知,要使P点第一次到达波峰,则两波均应传播距离x=5m,所以t=xv=520=0.25s由图可知,要使P点第一次到达平衡位置,则两波均应传播距离x′=15m;故所用时间为t′=x′v=1520s
一平面简谐波沿0x轴传播==〉公式方向沿x轴正方向(波的方向可能变,看公式中的符号)原式可化为:y=5cos(8*(t+3x/8)+π/4)对比波的标准表达式ψ=Acos(w(t-x/u)+φ)w=2
这个文档的六七页就是解析,很详细哦!
用复数表示跟实数表示一样的.复数表示的那个你取实部就行.这里采用复数的表示方法,是为了描述和分析的便利.因为相位的变化直接可以用复数的相角表示,处理起来简单.在学了波函数以后,你会发现波函数的通解是以