如图所示在正方形abcd中m微bcshangdeyidian
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:34:27
PE+PD最小就是BE的长,BE就是正方形的边长,∴S正方形ABCD=25.
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
作AH⊥FB,(H在FB上),连DH,ABCD为正方形,EA⊥面ABCD,AD⊥BAEF面,FB⊥AD,DH⊥AD,∠AHD是二面角A-FB-D,作EG∥FB,(G在AB上),△ABH∽△EGA,AH
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
证明:如图,延长AB到F,使BF=CE,连接EF与BC相交于点N,在△BFN和△CEN中,∠FBN=∠C=90°∠BNF=∠CNEBF=CE,∴△BFN≌△CEN(AAS),∴BN=CN,EN=FN,
红色面积为绿色面积的4倍,即红色的边长为绿色边长的2倍,黄色边长为一半的红色边长加上一半的绿色边长,即黄色边长为绿色边长的1.5倍,黄色面积为13*1.5*1.5=29.25再问:看蒙啦!!!再答:用
(Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,∴四边形D1OBM是平行四边形,∴D1O∥BM.(2分)∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC
这个好几种方法呢,选择最简单的吧.过点B作BE⊥AB1交AB1于点E,连接CE.∵BC⊥平面ABB1,∴BC⊥AB1,∴AB1⊥平面BEC,∴AB1⊥CE∴∠CEB即为所求角RT△ABB1内,AB=2
将4个点连起来就行了,每个点到顶点的距离为根号2.
解题思路:延长CD到E,使DE=BM,连接AE易证△ADE≌△ABM所以DE=BM,AE=AM,∠BAM=∠EAD已知AM=BM+DN所以AE=NE所以∠EAN=∠ENA即∠ENA=∠EAD+∠DAN
(1)CF中点假设为G,EG//BD所以BD//平面CEF(2)45°得到,CD=DE再问:能在详细点吗?再答:(1)OG//AF,OG⊥平面ABCD,OG=AF/2=DE,ODEG是个矩形,所以EG
在正方形ABCD中,AC=根号2*AD所以:AD=3根号2所以:S扇形=(AD平方乘π)/4=4.5乘πS阴=18减4.5乘π
⊿ABM绕A逆时针旋转90º,到达⊿ADG,GN=BM+DN=MN ∴⊿ANM≌⊿ANG(SSS)∠NAM=∠NAG, ∠MAG=∠MAD
连结B、E易证EC⊥BF∴A、B、M、E四点共圆∴∠ABE=∠AME∵∠AMB=90-∠AME∠ABM=90-∠FBC∠FBC=∠ABE=∠AME∴∠ABM=∠AMB∴AM=AB
(1)依条件有D(0,-4),E(0,.1)由△OEA∽△ADO知OA=OE*OD=4.∴A(2,0)由Rt△ADE≌Rt△ABF得DE=AF∴F(3,0).将A,F的坐标代入抛物线方程,得4a+2b
取BC中点N,过N作NH⊥AE,垂足HM是CD的中点,可知BN=DM易证ΔABN≌ΔADM则有∠BAN=∠DAM因∠BAE=2∠DAM故AN平分角BAE所以有NB=BH由ΔABN≌ΔAHN可得AH=A
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
⑴∠ADC=∠A1DC=90º,∴∠ADA1=180ºA,D,A1三点共线.⑵⊿BCE≌⊿B1CE(SAS)∠EB1C=∠EBC=a∴∠BRF=∠EB1C+∠EBC=2a.
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/