如图所示有一杠杆可绕O点转动,在其中点挂一重物,现在A端
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:22:07
当F垂直与OA向上时,力臂最长,并且大于阻力臂,由杠杆平衡的条件可知,F<G;F绕A点顺时针旋转90°时,力F的力臂为零,则此过程一定有动力臂等于阻力臂和动力臂小于阻力臂,当动力臂等于阻力臂时,F=G
一根轻质杠杆可绕O点转动,在杠杆的中点挂一重物G,在杠杆的另一端施加一个方向始终竖直向上的力F,力F使杠杆从所示位置慢慢抬起到水平位置的过程中,力F的力臂LF将【变大】,重力G的力臂LG【变大】则力F
如图,为使拉力最小,动力臂要最长,拉力F的方向应该垂直杠杆向上,即竖直向上,动力臂为OA最长,∵杠杆在水平位置平衡,∴F×OA=G×OB,∴F=G×OBOA=30N×12=15N.故答案为:向上,15
(1)用杠杆平衡原理,10×30=F*50可得,F=6N(2)由第一问可知F1的分力F始终不变,当夹角变大时,力F1变大
力臂:1/4米;阻力臂:根号3米
(1)过支点O作垂直绳子对杠杆的拉力F作用线的垂线段(即力臂L).如图所示:(2)如上图所示,在Rt△OAD中,∠ODA=90°,∠DAO=30°,∴OD=12OA=12×50cm=25cm根据杠杆平
如图,为使拉力最小,动力臂要最长,拉力F的方向应该垂直杠杆向上,即竖直向上,动力臂为OA最长,∵杠杆在水平位置平衡∴F1L1=F2L2F1×0.2m=30N×0.1m  
1.F1L1=F2L2.F2=F1L1\L2,=12N*1\2=6N2.F1L1=F2L2.L2=F1L1\F2,6N*1\6N=1即F2的方向为竖直向下.
在转动过程中,力F的力矩克服重力力矩而使杠杆运动,可认为二力矩相等,重力不变,而重力的力矩在杠杆水平时最大,力矩最大,所以说从A到A′过程中重力力矩先变大后变小,而F的力臂不变,故F先变大后变小.故选
1:20cm2:600N要解释的话HI百度留言.祝您成功
(1)拉力F的力臂如图所示,sin∠OAC=OCAC=12ACAC=12,∠OAC=30°,AC=OAcos30°=20cm32=4033cm,OC=12AC=2033cm,三角形面积为:12OA×O
因为ob等于0.5oa所以F弹=3.9=2G铁所以G铁=1.95N又因为ρ铁=7.8*1000kg/立方米所以V铁=G/(g*ρ)=0.000025立方米所以F浮=V铁*ρ水*g=0.000025*1
由图知重力的力臂小于OB,当拉力方向与OA垂直时,拉力的力臂最大,为OA,OA=OB,则拉力的力臂可以大于重力的力臂,当力的方向与OA不垂直时,力臂小于OA,最小可接近为0,即力臂可从比G的力臂小变到
F的力臂明显是减小的重力G铭心啊是不变的重力的力臂是增大的GLg=FLf所以F变大选AD
沿箭头方向延长BF1,过O点做垂线垂直于BF1,得直角三角形.由几何定理知:OF1=OB/2(OF1即为F1的力臂)再由杠杆平衡原理得:F1*OF1=P*OAF1=P=6N
(1)∵ρA=ρB,∴mAmB=VAVB=81,∴GA=8GB-------------①人到达N点静止时,杠杆平衡时:∵FA对杠杆LOM=G人v人t人,即FA对杠杆×4m=G人×0.1m/s×6s,
如图所示,一轻质杠杆OA可绕O点转动,A端用绳子系住,绳子的另一端系于接力F的力臂L1=√3L(3的平方根).设最远处OB,此时拉力达到最大,即1
设杆重为G,120*1+0.5*G/8=7*7G/(8*2),解得:G=40N.需要注意的是,可以认为杆的两侧的重心在两侧各自的中点再问:原谅我的无知,请问一下等号后面的7*7G/(8*2)是什么意思