如图抛物线y=ax方-3 2x c的图像与x轴-点E是Y=-X上的一动点-

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:51:01
如图抛物线y=ax方-3 2x c的图像与x轴-点E是Y=-X上的一动点-
如图,已知抛物线y=ax方+bx+c的顶点坐标为Q(2,-1),且与y轴交于C(0,3),与x轴交于AB两点

(3)(4分)解: 由题(2)知,当点P的坐标为P1(1,0)时,不能构成平行四边形当点P的坐标为P2(2,-1)(即顶点Q)时,平移直线AP(如图)交 轴于点E,交抛物线于点F.

已知,如图1,抛物线y=ax²-2ax+c(a≠0)与y轴交于点C(0,-4)

(1)将A、C坐标代入抛物线y=ax²-2ax+c得:0=9a-6a+c4=c解得:a=4/3,c=4所以抛物线解析式为y=4x²/3-8x/3+4(2)

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

1已知:抛物线y=ax的方+bx+c,(b>0,c

4a分之4ac-b方=0又因为b+ac=3所以b=2或-6因为b>0所以b=2后面还要讨论.有点烦..

如图,已知抛物线y=ax方+bx+c经过A(-2 0)B(0,-4)C(2 -4)三点且与x轴的另一交点为e

1将A(-20)B(0,-4)C(2-4)代入y=ax²+bx+c得{4a-2b+c=0……①c=-4……②4a+2b+c=-4……③③-①,得4b=-4b=-1把b=-1,c=-4代入①,

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

已知抛物线y=ax方+bx+c满足以下条件,求函数的表达式

(1)、由题意得方程组a+b+c=0;c=-3;-(b/2a)=2解得a=-1,b=4,c=-3所以解析式为y=-x的平方+4x-3

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

如图,抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k,所得抛物线

抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k则h=1,k=-4所以新抛物线:y=(x-1)²-4,顶点D(1,-4)其与x轴的交点为:0=(

如图,抛物线y=ax²+bx+c 的顶点为P(-2,2)

先将y=ax²+bx+c改为y=a(x+k)²+c将顶点(-2,2)带入方程,得y=a(x+2)²+2在将点A带入方程3=a(0+2)²+2解a=4/1从题意得

如图,抛物线y=x^2-2mx+(m+1)^2(m>0)的顶点为A,另一条抛物线y=ax^2+n(a

设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

抛物线y=ax方+bx+c(a≠0)图像经过原点,则

抛物线y=ax方+bx+c(a≠0)图像经过原点c=0对称轴x=-b/2ay=ax方+bx=a(x+b/2a)²-b²/4a²顶点坐标(-b/2a,-b²/4a

如图,在平面直角坐标系中,抛物线y=ax方+c与x轴正半轴,y轴正半轴分别交于点A(4,0)B(0,4),点C为抛物线y

(1)B(0,4),c=4过A(4,0):16a+4=0,a=-1/4(2)AC=OC,C在OA的中垂线x=2上,x=2,y=(-1/4)*4+4=3C(2,3)AC:(y-0)/(3-0)=(x-4

抛物线y=ax方+4ax+t与X轴的一个交点为A(-1,0)

解1)有根于系数关系得x1+x2=-4x1=-1所以x2=-3即另一交点为(-3,0)2)可知D(O,T)因为AB平行于CD所以设C(X,0)那个三角形得面积是9啊是ABC吧!所以ABC=|t|*(-

如图,抛物线y=ax²+c(a

(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4