如图抛物线y=x2-3x 4分之5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:32:12
(1),因为x1+x2=4,且x1/x2=1/3,解得x1=1,x2=3.则A(1,0)、B(3,0)代入到抛物线方程,解得b=4,c=-3,则抛物线表达式为:y=-x^2+4x-3.(2),抛物线与
(1)由C的横坐标为0,知C(0,6)(用抛物线的方程),而B与C纵坐标相同,求知B(3,6)(2)由OD=5,OE=2EB知D(0,5),E(2,4);F在直线DE上且纵坐标为0,得F(10,0).
x+1/x=3,两边同时平方得到x^2+1/x^2+2=9所以x^2+1/x^2=7x^2/(x^4+x^2+1)=1/(x^2+1/x^2+1)=1/(7+1)=1/8
x=[ones(13,1),x1,x2,x3,x4];[b,bint,r,rint,stats]=regress(y,x);b,bint,stats
⑴直线AC:Y=3X+3,⑵直线PQ∥AC,AC=PQ①令Y=3得,-X^2+2X+3=3,X=2或0(舍去),∴Q1(2,3)②令Y=-3得,-X^2+2X+3=-3,X^2-2X+1=6+1,(X
(1)k=-3,点A的坐标为([-b-√(b²+12)]/2,0),点B坐标为([-b+√(b²+12)]/2,0)(2)设抛物线y=x2+bx+k的顶点为M,求四边形ABMC的面
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
求采纳! 我也很辛苦
解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:
解①依题意可知方程-x²+bx+c=0的两个根是x1=1x2=-3即方程x²-bx-c=0的两个根为1和-3由韦达定理b=1-3=-2-c=1×(-3)c=3所以抛物线的解析式为y
(1)根据题意得(m-3)2-4•(-m)1=3,解得m1=0,m2=2,即m为0或2时,抛物线与x轴的两个交点间的距离是3;(2)∵△=(m-3)2-4•(-m)=m2-2m+9=(m-1)2+8>
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+.(1/2006-1/2007)=1-1/2007=2006/2007
(1)A(3,0)B(0,-3)则c=3y=x2+bx-3当x=3,y=0时,b=-2y=x2-2x-3(2)的题目有问题吧!
(1)因为A(3,0)在抛物线y=-x2+mx+3上,则-9+3m+3=0,解得m=2.所以抛物线的解析式为y=-x2+2x+3.因为B点为抛物线与x轴的交点,求得B(-1,0),因为C点为抛物线与y
1直线y=x+m经过点A(1,0),即0=1+m,m=-1抛物线y=x2+bx+c都经过点A(1,0),B(3,2).即0=1^2+b+c2=3^2+3*b+cb=-3,c=2即y=x2-3x+2x>
L2:y=-(x+1)(x-3)=-x²+2x+3P(x0,y0)y0=-x0²-2x0+3P关于原点的对称点Q(x,y)x=-x0y=-y0-y=-x²+2x+3y=x
抛物线于y轴交点为B(0,c),A(1,0),所以直线AB是y=-cx+c,与抛物线y=ax^2+bx+c联立,得到ax^2+(b+c)x=0,其判别式△=0,得到b=-c,又由于抛物线顶点为(1,m
抛物线y=12x2+1是y=12x2-1向上平移2个单位长度得到的,即|y1-y2|=2.当直线l向右平移3个单位时,阴影部分的面积是,2×3=6.
∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴