如图是二次方程y=ax
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:07:31
(x1,m)&(x2,m)
可以根据根与系数的关系,得:x1+x2=-b/a,x1*x2=c/a那么y=a(x-x1)(x-x2)=a[x²-(x1+x2)*x+x1*x2]=a*(x²+b/a*x+c/a)
二次函数y=ax²+bx+c(a≠0)的零点是一元二次方程ax²+bx+c=0的根,如果填空的话就写一一对应.
再问:当一元二次方程>和小于0的解集呢再答:再答:采纳一下好吗?再答:我冲5级呢?谢谢了再答:不好意思2全改成3就对了。
x=0,及2时,函数值相同,因此对称轴为x=1x=-1时,f(-1)=0,因此一个根为-1,因此另一根为1+[1-(-1)]=3故方程的根为-1,3
题目不全,方程中的+-号看不见
元二次方程ax2+bx+c=0的求根公式是x=(-b_+根号下b^2-4ac)/2a直线y=ax+b的斜率为a
就是与X轴的交点,-1,3因为x轴是y=0的直线.不懂再问.
若抛物线y=ax^2+bx+c的顶点在原点,则有判别式△=b^2-4*a*c=0且对称轴x=-b/(2a)=0所以b=0(a≠0)==>c=0而ax^2+bx+c=0的解是X1+X2=-b/a;X1*
C将该抛物线下移5个单位,得y=ax²+bx+c-5顶点坐标为(-1,0)所以y=ax²+bx+c-5与x轴只有一个交点所以ax²+bx+c-5=0有两个相等的实数根
△=b^2-4ac=(a-c)^2-4ac=a^2+c^2-6ac因为a0所以-6ac>0又因为a^2+c^2>0所以△>0所以方程有2个不相等的实数根
有量个根抛物线与x有两个交点,对应的二元一次方程有两个不等的实根抛物线与x有一个交点,对应的二元一次方程有两个相等的实根抛物线与x有无交点,对应的二元一次方程无实根
二次函数y=ax^2+bx+c与x轴的交点是当y=0时x的值当y=0那么ax^2+bx+c=0已知ax^2+bx+c=0的根(即解)为-2和6所以二次函数y=ax^2+bx+c与x轴的交点是-2和6又
两根之和有公式-(b/a),对称轴为-(b/2a),所以对称轴为cx=-1
∵函数y=ax-1ax2+4ax+3的定义域为R∴ax2+4ax+3>0在R上恒成立当a=0时,3>0显然成立,当a≠0时,a>0(4a)2-12a<0解得0<a<34综上所述:实数a的取值范围是0≤
交点为(-5,0),和(3,0)原因抛物线y=ax²+2ax+c对称轴x=-2a/2a=-1两个交点关于直线x=-1对称
这么说吧,这两个数式均为二次函数的表达式.第一个称为“二次函数的一般表达式”,求解析式时,带入再次抛物线上的三个点的横纵坐标然后再加减消元,换原等方法求出a,b,c第二个称为“二次函数的双根式”,把抛
a>0ax²+bx+c=0的解集为{[(-b+√(b^2-4ac)]/2a,[(-b-√(b^2-4ac)]/2a}x²+bx+c>0的解集为{{x>[(-b+√(b^2-4ac)