如图正方形abcd中,O为AC中点P为对角线AC的一动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:10:14
如图正方形abcd中,O为AC中点P为对角线AC的一动点
已知正方形ABCD中,O为AC的中点,E,F分别为BC,CD上一点且FC+CE=AB(1)如图判断△EOF形状并证明

证明:(1)连接OD∵O是正方形ABCD对角线AC的中点∴OD=OC又∵CE+CF=AB=CD∴CE=DF角ODF=角OCE=45°∴△ODF≌△OCE∴OF=OE∠DOF=∠COE∵∠COF+∠DO

已知如图,在四边形ABCD中,对角线相交于点O,AO=BO=CO=DO,AC⊥BD.求证:四边形ABCD是正方形

由AO=BO=CO=DO,AC⊥BD根据三角形全等,可得AB=CD,AD=BC,所以四边形ABCD是平行四边形(两组对边分别相等)又因为AC=BD,AC⊥BD,所以平行四边形ABCD是正方形(对角线垂

如图4 在正方形ABCD中 AC为对角线 E为AC上一点连接EB ED

证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.又EC=EC,∴△BEC≌△DEC.(2)由(1)可知:△BEC≌△DEC∴∠BEC=∠DEC=1/2∠BED=70°∴∠AE

如图,在正方形ABCD中,O为对角线AC和BD的交点,E为CO上一点,连接BE,F为∠OBE角平分线上一点,连接OF、A

1、∵BF平分∠OBE∴∠OBF=∠GBF∵BO=BG,BF=BF∴△OBF≌△GBF∴OF=FG∵FG⊥OF∴△OFG是等腰直角三角形∴OG=√(OF²+FG²)=√22、作OH

已知:如图,正方形abcd的对角线ac、bd相交于点o;正方形abcd的顶点

简单因为OBC和OCD为等腰三角形E为BC中点所以角OEC=90所以角OFC=360-270=90因为OCD与等腰三角形三线合一,F为CD中点

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O

因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG

已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB

好评给我把再答:再问:答案拿来再答:发了再问:采纳了

如图1,已知以点O为对称中心的正方形ABCD中,AB=2,以O为顶点作正方形OEFG和正方形ABCD全等,正方形OEFG

(1)连结OB,OC.易知OB=OC,∠BOC=90°,∠OBM=∠OCN=45°而∠EOG=90°∴∠BOM=∠BOC-∠EOC=∠EOG-∠EOC=∠CON∴△OBM≌△OCN(ASA)∴BM=C

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.

正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF⊥DC于点F.如图1,当点P与点O重合时,

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

初三证明题:如图,正方形ABCD中,点O是对角线AC的中点,点P为对角线AC上一动点,过点P做PF⊥DC于F,如图1,

(1)连接BE、PD,过点P作AD的垂线,垂足为G,①因为点O为正方形ABCD对角线AC中点,∴点O为正方形中心,且AC平分∠DAB和∠DCB,∵PE⊥PB,BC⊥CE,∴B、C、E、P四点共圆,∴∠

已知:如图,在正方形ABCD中,对角线AC、BD相交于点O,E是AB上任意一点,EG⊥AC,EF⊥BD,垂足分别为G、F

没有看到图,但是做出图来可以知道,因为是正方形,所以AC⊥BD,AO=OC角BAC为45度,EG⊥AC,所以EG=AG,四边形EFOG为长方形,所以EF=GO,即EG+EF=AG+GO=AO=1/2A

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点P在BD上,四边形AEPF为矩.

①⊿BEP等腰直角,AEPF为矩形,∴BE=EP=AF.又OA=OB.∠OAF=∠OBE=45º∴⊿OAF≌⊿OBE(SAS),∴OF=OE.∠FOA=∠EOP②∠FOE=∠FOA+∠AOE

如图 已知在正方形ABCD中,E为CB延长线上一点,F在AD边上 且BE=DF,EF与AC交于点O

DB与EF平行且相等,所以EFBD是平行四边形,ADB=DBC=FEC=45ACB=45所以是等腰,正方形对角线互相垂直,同位角相等,因此是直角

如图,正方形ABCD中,以B为圆心,BA长为半径作弧AC,圆o与弧AC外切于点P,与AD,CD相切于点E,F,正方形

设圆o的半径是R.    ∵圆o与弧AC外切于点P,与AD,CD相切于点E,F    ∴OP=OE=OF,OE⊥AD,O

 已知:如图,正方形ABCD,AC、BD相交于点O,E、F分别

按题意,可知OM应为CE的一半.如果假设M无限接近于B点,则E也将无限接近于B点,此时OM趋于CE/√2,③并不成立所以你确定题目或答案都没弄错?要是你确定题目没错,那么要敢于质疑参考答案的正确性.因

如图,在正方形abcd中,o是边cd上一点,以o为圆心...

设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4

如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆