如图点def分别在AB.BC.AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:38:05
如图点def分别在AB.BC.AC
已知在△ABC中,AB=AC,D、E、F分别是AB,BC,CA上的点,且∠DEF=∠B,BD=CE.请你说明△DEF是等

连接DFAB=AC所以∠B=∠C因为∠DEB+∠DEF+∠FEC=180,∠DEF=∠B又因为∠B+∠BDE+∠DEB=180所以∠BDE=∠FEC因为BD=CE所以可证△BDE≌△CEF所以DE=F

如图,矩形ABCD中,点E,F分别在 AB,BC上,△DEF为等腰三角形,∠DEF=90°,AD

4再问:过程再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根据勾股定理,DE平方=EF平方,就可算出AD=4再答:你知道勾股定理吧?设AD为x,AE=BF=2,BE=10-x,根

三角形ABC中,已知:AB=2,BC=1,CA=√3,分别在边AB,BC,CA上取点DEF,使三角形DEF是等边三角形,

过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A

已知:如图,点A、B、C分别在三角形DEF上,且AC//DE,EF//AB,BC//DF

AB//DE,EF//BC,角BAC=角EDF,角BCA=角EFD,AC=DF,三角形ABC≌三角形DEF.

已知锐角三角形abc,在BC,CA,AB边上分别取D,E,F,怎样才能使三角形DEF的周长最小?

过三个角作角平分线交于点H为内切圆的圆心圆心到各边的距离最小圆与三个边的内切点固定所以两点之间的弦固定三条弦加起来也最短所以当def为三角形的三个内切点时△def的周长最小再问:有木有初二的答发再答:

如图,在矩形ABCD中,点E,F分别在AB,BC上,△DEF为等腰直角三角形,∠DEF=90°,AB+CD=10,AE=

因为∠AED+∠BEF=90°∠AED+∠ADE=90°所以∠BEF=∠ADE因为△DEF为等腰直角三角形所以DE=EF所以三角形AED与三角形FBE全等所以EB=AD由已知条件矩形可知CD=ABAB

如图,已知长方形ABCD中,点E.F分别在AB.BC上,△DEF为等腰直角三角形,∠DEF=90º.AD+CD

因为△DEF是等腰直角三角形,所以DE=EF,∠DEF=90°,那么∠DEA+∠BEF=90°,因为△BEF是直角三角形,那么∠BEF+∠BFE=90°,所以∠DEA=∠BFE,另外,∠DAE=∠EB

如图,在△ABC中,AB=AC.D,E,F分别为AB,BC,CA上的点,且BD=CE,∠DEF=∠B.求证:△DEF是等

AB=AC∠C=∠B……①∠DEC是外角,∠DEC=∠B+∠BDE因为∠DEF=∠B所以∠FEC=∠BDE……②又因BD=CE……③△BDE≌△CEF所以DE=EF

已知,在三角形ABC中,AH垂直BC于点H,D,E,F分别是BC,AC,AB的中点.求证:三角形DEF全等三角性HEF

证明:∵AH⊥BC,E为AC中点∴EH=1/2AC∵D为BC中点.E为AB中点∴DF=1/2AC∴DF=EH同理HF=DE∵FE=FE∴△EFH≌△FED

在△abc中def分别为边ab bc ca 的中点证明四边形decf是平行四边形

连接DE,DF,因为DE是三角形ABC各边的中点,所以DF、DE是中位线,中位线是平行底边的,两条对边都平行的四边形是平行四边形

在△ABC中,DEF分别为AB,AC,BC上的点,且DE平行于BC,EF平行于AB.求证:∠ADE=∠EFC

画出三角形可知:在三角形ABC和三角形EFC中,两三角形共用角C又因为AB平行于EF所以三角形ABC与EFC相似即角EFC=角ABC同理三角形ABC与三角形ADE相似即角ABC=角ADE综上角ADE=

在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B

存在△BDE全等于△CEF.证明:在△ABC中,AB=AC,所以∠B=∠C;因为∠DEF=∠B,所以∠C=∠DEF;因为∠BEF是△CEF的一个外角,所以∠BEF=∠C+∠CFE;又∠BED+∠DEF

在△ABC中,AB=AC,边BC的中点为D,作等边三角形DEF,是顶点E、F分别在边AB和AC上.

在ABC中,AB=AC,边BC的中点为D.作一个等边三角形DEF,使顶点E,F分别在边AB和AC上,(1),若∠BDE=∠CDF=60°时,EF与BC平行.理由:AB=AC,则∠B=C,又BD=DC,

在三角形ABC中,AB=AC,等边三角形DEF的三个顶点D、E、F分别在AB、AC、BC上,∠BFD=a,

列两个等式:a+60+∠EFC=Y+∠C+∠EFC=180a+∠B+∠BDF=b+60+∠BDF=180得:a+60=Y+∠Ca+∠B=b+60两式相加得2a+60+∠B=Y+b+60+∠CAB=AC

如图,△ABC为等边三角形,点DEF分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

∠DFC=∠A+∠ADF(三角形一个角的外角等于另外两个角之和)∠DFC=∠DFE+∠EFC∵∠A=∠DFE=60∴=∠ADF=∠EFCDF=EF∠A=∠C所以△ADF≌△CFEAD=CF同理BE=C

三角形ABC,已知AB=2,BC=1,CA=根号3,点D.E,F分别在AB,BC CA 边上,三角形DEF为正三角形,记

在△ABC中∵BC=1,AB=2,CA=√3∴∠ACB=90°,且∠ABC=60°设△DEF的边长为x由sinα=(2/7)√7,可得cosα=√(3/7)在Rt△FEC中可得CF=[√(3/7)]x