如图点o是△ABC的三条角

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:12:55
如图点o是△ABC的三条角
已知O是△ABC的重心,求证:OA

证明:如图所示,设D为BC边的中点,则OB+OC=2OD.∵O是△ABC的重心,∴OA=−2OD,∴OA+OB+OC=0.

已知:如下图,O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.

(1)∵∠A=∠ACE-∠ABC=46°∴∠BOC=∠OCE-∠OBE=1/2(∠ACE-∠ABC)=23°(2)∠ACE=∠A+∠ABC∠OCE=∠OBC+∠BOC2∠OCE=2∠OBC+2∠BOC

在△ABC所在平面上有一点O,且OA*OB=OB*OC=OC*OA,则点O是△ABC的()心

OA*OB=OB*OCOB*(OA-OC)=0OB*CA=0BO⊥CA同理CO⊥BAO是△ABC的(垂)心

△ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,则至少旋转______度后能与原来图形重合.

连接OA、OB、OC,旋转中心为点O,根据等边三角形的性质可知,OA=OB=OC,∠AOB=∠BOC=∠COA=120°,所以,至少现在120度后能与原来图形重合.

在△ABC中,圆o截△ABC三边所得的弦长相等.求证:o是三角形的内心

内心:到三边的距离相等.三条弦长相等,三条弦到圆心的距离相等,当然圆心就是内心了.

如图,在△ABC中,⊙O截ABC的三条边所得的弦长相等,求证:O是△ABC的内心

由O点分别向三条边作垂线,垂足分别为E,F,G;则OE,OF,OG为三条弦的弦心距.由于三条弦长相等,故OE=OF=OG;∴O是△ABC角平分线的交点,故O是△ABC的内心

如图点O是三角形ABC三条角的平分线的交点,过点O作OG垂直BC垂足为点G,求证角1=角2.

∵∠COG=90°-½∠BCA又∵∠DOB=∠AOE=180°-∠OAE-∠OEA=180°-∠OAE-(∠OBC+∠BCE)=180°-∠OAE-∠OBC-∠BCE=180°-&fra

若O是△ABC内部一点,且向量OA+向量OB+向量OC=向量0,求证:O是△ABC的重心

设线段AB中点DOA+OB=2OD=-OC所以OC、OD共线.所以OC过AB边的中点,是AB边的中线.同理可证其他都是对应边的中线.所以中线的交点是重心.

如图:在△ABC中,O是∠ABC与∠ABC的平分线的焦点.求证:点O在∠A的平分线上

用塞瓦定理来证:三角形ABC内先引两条角分线设为AOBO交于O点然后连接CO并由塞瓦三角形式sin∠OAB/sin∠OAC*sin∠OCA/sin∠OCB*sin∠OBC/sin∠OBA=1因为AOB

已知,如图,o是△abc的

再答:不容易啊。找了张卫生纸给你写的。求采纳再问:enen再答:麻烦采纳啊亲再问:还有再答:先采纳。。咱一道一道来。做人要厚道再问:

如图,在△ABC中,AB=AC=10,BC=12,圆O是三角形ABC的内切圆.求圆O的面积.

角形ABC是等腰三角形,底边上的高h=√100-36=8三角形ABC的面积为48设三角形的内切圆的半径为x那么内切圆圆心到三角形ABC三边的距离都是x于是,1/2AB*x+1/2AC*x+1/2BC*

如图,⊙O是△ABC的外接圆,AD是△ABC的高,AE是⊙O的直径,求证:∠BAE=∠CAD.

证明:连接BE,∵AE是⊙O的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.∵AD是△ABC边上的高,∴∠ADC=90°.∴∠CAD+∠ACB=90°.∵∠E=∠ACB,∴∠BAE=∠CAD.

如图所示,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1.

如图,①连接BO,则∠AOB=2∠ACB=2*45°=90°,所以三角形AOB是直角三角形,则有AB=AO*√2=1*√2=√2,在△ABC中,AC/sin∠ABC=AB/sin∠ACB,AC=√2*

点O是三角形ABC的重心,S△ABC=9平方厘米,则S△BCO=

S△ABC=(1/2)BC*AE=9.(AE⊥BC).S△BOC=(1/2)BC*OF(OF⊥BC).可见三角形ABC与OBC是是同底不等高的两个三角形.由相似三角形可证明OF=AE/3.∴S△OBC

已知:如图,圆o在△abc的三边上截弦de=fg=kh求证:点O是△ABC的内心

∵de=fg=kh∴点O到DE、FG、HK的距离相等(同圆中,相等的弦所对的弦心距相等)∴点O在∠ABC和∠ACB的平分线上,即点O是△ABC的内心.

已知,如图O是△ABC的内角∠ABC和外角∠ACE的平分线的交点

∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CO平分∠ACE∴∠OCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2∵BO平分∠AB

已知,如图O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.

∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CO平分∠ACE∴∠OCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2∵BO平分∠AB

已知点O是△ABC边AC的中点,试画出△ABC绕点O旋转180度后的图形

连接OB,并延长至D,使OB=OD,连接AD,CD,三角形ADC就是三角形ABC绕O点旋转180度后的图形