如图直线l1∥l2已知∠cab=125°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:01:17
(2)不变无论P在AB间哪一点,都可以通过P作平行于l1和l2的直线来证明∠1+∠2=∠3(PS:本来第(1)问中的P就是AB间任取的一点)(3)当P在BA的延长线上时∠1+∠3=∠2当P在AB的延长
(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-
答案:∠2=∠1+∠3证明:从P点作L1、L2的平行线L3,交CD于点O则:∠2=∠CPO+∠DPO∵L1∥L2∥L3∴∠1=∠CPO,∠3=∠DPO∴∠2=∠1+∠3(2)如果点P在A,B两点之间运
(1)∠1+∠2=∠3由P点做l5//l1,因为l1//l2,由平行线的传递性可以知道,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以l2//l5设l5把∠3分成∠4和∠5(∠4在l5
延长AB角L2与点F∵l1∥l2AB⊥l1∴AB⊥L2∴∠BFE=90°∵∠A=45°∴∠2=90°+45°=135°
(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD
如图所示,建立直角坐标系.∵AB=2,∴B(2,0).设C(c,c),P(x,x).∵CD=λAB,∴AD=AC+λAB=(c+2λ,c).又PB=(2-x,-x).∴2PB+PD=(c-3x+2λ+
证明:连接AF,交L2于G点,连接BG、GE,可知BG//CF,GE//AD在∆ACF中,BG//CF即AB/BC=AG/GF在∆ADF中,GE//AD即DE/EF=AG/GF
角1的补角等于72°,和∠2相等,同位角相等,L1∥L2∠2=∠3,同位角相等,L2∥L3所以L1∥L2∥L3
图呢再问:再答:题目发全好不再问:再答:先证明四个三角形全等,因为临边相等的矩形是正方形,l1平行于l2,所以pmnq是矩形,又因为全等,所以pn等于nm再问:可不可以用PM和QN的垂直呢如果要用应该
(1)如图,过点P做AC的平行线PO,∵AC∥PO,∴∠β=∠CPO,又∵AC∥BD,∴PO∥BD,∴∠α=∠DPO,∴∠α+∠β=∠γ.(2)①P在A点左边时,∠α-∠β=∠γ;②P在B点右边时,∠
(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3.(2)①过A点作AF∥BD,则AF∥BD∥CE,
(1)、∠2=∠1+∠3(方法是过P作直线l∥l1,则l∥l1∥l2,l将∠2分成两个角,其中一个等于∠1,另一个等于∠3)(2)、点P在A、B两点之间运动时,∠1、∠2、∠3之间的关系不会发生变化.
(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-
(1)如图,过点P做AC的平行线PO,∵AC∥PO,∴∠β=∠1,又∵AC∥BD,∴PO∥BD,∴∠α=∠2,∴∠α+∠β=∠γ.(2)∠α-∠β=∠γ,(提示:两小题都过P作AC的平行线).再问:第
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
解析:设直线DF交AC于点O由l2//l3可得∠OBE=∠OCF,∠OEB=∠OFC(两直线平行,内错角相等)又∠BOE=∠COF所以△BOE∽△COF(AAA)则OF/OE=OC/OB所以(OE+O
延长DP交l1于点E∠α+∠β=∠γ因为l1∥l2所以∠1=∠β因为∠CPD是△PCE的外角所以∠CPD=∠1+∠β所以:∠α+∠β=∠γ
(1)由题意得,令直线l1、直线l2中的y为0得:x1=-32,x2=5,由函数图象可知,点B的坐标为(-32,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得:
图④:∠1+∠2+∠3=360°,图⑤:∠1=∠2+∠3,图⑥:∠2=∠1+∠3.