如图直线y等于x加2与抛物线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:10:31
令x^2=2x 解得x=2 或x=0.由于第一象限,所以x不等于0.x=2时,y=4 所以A点坐标为(2,4)OA长度为2√5,若AOP为等腰三角
由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3
因为在三角形PFG中,两边之差小于第三边,所以lPG-GFl小于等于PF当lPG-GOl取得最大值时,P、F、G不能构成三角形,所以P、F、G共线,即点G在PF的延长线上.
用定积分,被积函数为x+2-x^2,积分区间为-1到2,就能做出来了.如果我没算错的话,结果为9/2积分符号,下限-1,上限2,被积函数x+2-x^2,然后是dx,做积分,积完后得1/2x^2+2x-
再问:再问你一道题目行不再问: 再答:
答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!
(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
(1)y=1/2x+1与y轴交于点A,可以得到A点坐标为(0,1),又知B点坐标为(1,0),代入y=1/2x²+bx+c,解得b=-3/2,c=1,该抛物线的解析式为y=1/2x²
再问:第三问的P点是怎么求出来的啊,那个算的过程我不太懂,不好意思·····再答:刚看见当时写错了可以这么说,AB的长已经确定了,我们把AB当做底,只要求出在AB上的高,就可以求出面积了,现在要求面积
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
第一个问题很简单联立两个方程就可以得到焦点坐标,然后再求出线段长度即可.第二个问题用不等式求解从第一问可以得出扇形的周长,且为常数.设出扇形的半径,可由半径即周长得出扇形的半径夹角,由此可以得出扇形面
Y=X^2-(K+1)X+K,令Δ=(K+1)^2-4K=(K-1)^2=0,得K=1,∴当K=1时,抛物线与X轴只有一个公共点.∵ΔAOC∽ΔCOB,∴OA/OC=OC/OB,∴OC^2=OA*OB
由于对称轴方程为x=-b/2a,所以得到-b/2a=-3,再由题中可知a=1,所有可求得b=6,之后再把点A(-4,-3)带入方程中,可求得c=5,所以抛物线解析式为y=x2+6x+5.ps:图画错了
x-2y+3=0y=1/2x+12y=x+2x-2y+2=0d=/3-2//5^1/2=1/5^1/2=5^1/2/5
1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当
y=x^2-x-2y=2x-1x^2-x-2=2x-1x^2-3x-1=0(x-3/2)^2=9/4+1=13/4x=3/2(+/-)根号13/2y=2(+/-)根号13即交点坐标是(3/2+根号13
y=-1/2(x-4)(x+2)AE=4AO,E(-10,0)
y=x-3A(3,0),B(0,-3)y=x^2+bx-c9+3b-c=0.(1)c=3b=-2y=x^2-2x-3y=(x-1)^2-4D(1,-4)