如图矩形oabc的边oaoc在坐标轴上,顶点b在第一象限.反比例函数y=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:38:09
如图矩形oabc的边oaoc在坐标轴上,顶点b在第一象限.反比例函数y=
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点

提示:【1º】若A在x轴上,C在y轴上⑴依题意,得A﹙4,0﹚,C﹙0,2﹚,M﹙4,1﹚,∵直线l:经过M﹙4,1﹚,∴y=﹣1/2x+3,当y=2时,x=2,∴N﹙2,2﹚.⑵∵反比例函

如图,在平面直角坐标系中,矩形OABC的顶点坐标为(15,6),

这条直线必定把这个矩形分成两个梯形,且两梯形的高相等,因为梯形的面积为〔(上底+下底)×高〕÷2,所以两梯形的上下底和相等,设此直线与oc的交点为p(0,b),与AB的交点为q(15,5+b),则两梯

如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,c

(1)设直线DE的解析式为,∵点D,E的坐标为(0,3)、(6,0),∴解得∴.∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2.又∵点M在直线上,∴2=.∴x=2.∴M(2

如图,在直角坐标系中,矩形OABC的定点B

1.提示:等分矩形面积的直线必过矩形的中心,即对角线的中点(7.5,3).带入直线方程,b得0.5.2.太抽象了,果断上图.显然BC"=2根号2

如图,在直角坐标系中,矩形OABC的顶点O在坐标系原点,边OA在x轴上,OC在y轴上,如果矩形OA'B'C'与矩形OAB

∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,1/4,∴两矩形的相似比为1:2,∵B点的坐标为(6,4),∴点B′的坐标是(3,2)或(-3,-2)

如图,在直角坐标系中,矩形oabc的顶点o在坐标原点,边oa在x轴上,oc在y轴上,如果矩形oA1B1C1与矩形OABc

∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,1/4,∴两矩形的相似比为1:2,∵B点的坐标为(6,4),∴点B′的坐标是(3,2)或(-3,-2)

如图 在直角坐标系中,矩形OABC的顶点C在x轴的负半轴上,点A在y轴正半轴上,矩形OABC的面积为32√2 ̄

连接OB交ED于P,由折叠知:DE垂直平分OB,∴PO=PB,∵OABC是矩形,∴AB∥OC,∴∠PBE=∠POD,∠PEB=∠PDO,∴ΔPBE≌ΔPOD,∴PE=PD,即P就是DE中点F,过F作F

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形

由题知点B(-1,3),绕点O顺时针旋转90°后,则:A'(3,0),B'(3,1),C'(0,1)(1)、将B(-1,3)和B'(3,1)带入y=mx+n得:3=-m+n——①1=3m+n——②,①

如图,将矩形OABC放置在平面直角坐标系中,点D在边OC上,点E在边OA上,把矩形沿直线DE翻折,使点O落在边AB上的点

再问:第三个两个点是怎么求的?要过程,谢谢再答:利用平行四边形的性质对边相等再问:我知道,我要过程过程

如图,矩形A'BC'O'是矩形OABC(边OA在x轴的正半轴上,边OC在y轴正半轴上)

(1)由题可知O’(2,0)M(1,-1)O(0,0)由待定系数法知这个二次函数的解析式为y=x2-2x.(2)由(1)知的坐标可求OM直线方程为y=-x,则当M为直角顶点时MP直线方程为y=x-2P

如图在平面直角坐标系中,矩形OABC的顶点与顶点O坐标原点重合

(1)设直线DE的解析式为,∵点D,E的坐标为(0,3)、(6,0),∴解得∴.∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2.又∵点M在直线上,∴2=.∴x=2.∴M(2

如图 在平面直角坐标系中 矩形oabc的顶点a

分段函数将三角形POD的面积记作S,由于网络上不好写规范,自己写哦(一)根据题意,O点应该是原点,首先求出D点,画出图.其一,三角形面积时底乘以高的一半;其二,距离等于速度乘以时间,可知(1)当t属于

好的加分!如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足 .

解:(1)|OA-2|+(OC-2√3)²=0,则OA=2,OC=2√3.即点B为(2√3,2),点C为(2√3,0).(2)AC=√(OC²+OA²)=4,即OA=AC

如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3).矩形O′A

O′点恰好在x轴的正半轴上,BO‘=BO则OA=O'A,OB=O'B△OBA≌△O'BA(1)O'(2,0)∠C'O'B=∠OBA=∠DBO'△BDO'为等腰三角形(2)AD=AO'*tan∠AO'D

如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3).矩形O′A′BC′是矩形OABC

(1)∵两个矩形是同一矩形旋转而成∴OB和O′B是相等的∴O′(2.0)∵△DAO′≌△DC′B∴O′D=BD△BDO′为等腰△(2)直线C′O′过O′和C′O′已得再看△DAO′,且O′D=BD∵B

如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3). 

(1)矩形是全等的,对角线BO=BO′所以△BOA全等于△BO′A所以OA等于O′A,O′的坐标是(2,0)△O′DB的形状为等腰三角形.(2)因为B(1,3)所以BC=BC′=1,O′C′=3由(1

如图7,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合

(1)设直线DE的解析式为y=kx+b,∵点D,E的坐标为(0,3)、(6,0),∴,解得k=-,b=3;∴;∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2;又∵点M在直线

如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半,B点的坐标为(1,3).矩形O′A′BC′是矩形OABC绕B

⑴连接OB、O’B,∵OB=O‘B,AB=AB,∠OAB=∠O'AB,∴ΔOAB≌ΔO’AB(HL),∴OA=O‘A=1,∴AB垂直平分OO’,∴O‘(2,0);∠ABO=∠ABO’,∵ΔOABC与Δ

如图,矩形A’BC’O’是矩形OABC(边OA在X轴正半轴,边OC在Y轴正半周上)饶B逆时针旋转得到的.O’点在X轴的正

(1)连接BO,BO′则BO=BO′∵BA⊥OO′∴AO=AO′∵B(1,3)∴O′(2,0),M(1,-1),∴{4a+2b+c=0a+b+c=-1c=0,解得a=1,b=-2,c=0,∴所求二次函