如图等腰直角三角形abc中AB=AC=6 以AB为直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:44:23
如图等腰直角三角形abc中AB=AC=6 以AB为直径
如图,等腰直角三角形 如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥

解(1)∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,又∵AD=AE,∠CAD=∠BAE,∵△ACD≌△ABE(SAS),∴∠1=∠3,∵∠BAC=90°,∴∠

如图,△ABC为等腰直角三角形

应是“求证:BE是AD的一半"延长BE交AC的延长线于点F,则有AE垂直平分BF,得BE=EF,BF=2BE角CAD=角DBE=22.5度,AC=BC,角ACB=角BCF=90度所以三角形ACD全等于

如图,在△ABC中,∠B=30°,AC=√2,等腰直角三角形ACD的斜边AD在AB边上,求BC的长

根据正弦定理,BC/sin45°=AC/sin30°∵AC=√2∴BC=sin45°·AC/sin30°=√2·√2/2÷1/2=2

如图,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中

如图②,恕我眼拙,点D在AB边上么?题目有问题啊还有,BF=CD,且BF⊥CD∵ABC等腰直角△,+O为AB中点∴BO=CO=AO,角BOF=角COD同理:FO=OD=OE∴△BOF≌△COD∴BF=

如图,已知PA垂直平面ABC,等腰直角三角形ABC中,AB=BC,AB垂直BC,AE垂直PB于E,AF垂直PC于F

因为:PA垂直平面ABC,所以:PA垂直BC,且AB垂直BC,所以BC垂直平面PAB,于是BC垂直AE;且AE垂直PB,可证明AE垂直平面PBC因为AE垂直平面PBC,所以AE垂直PC,且AF垂直PC

如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.

作CF⊥AB于F,交AD于G,如图,∵△ABC为等腰直角三角形,∴∠ACF=∠BCF=45°,即∠ACG=45°,∠B=45°,∵CE⊥AD,∴∠1+∠ACE=∠2+∠ACE=90°,∴∠1=∠2,在

如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,

不好意思我只能帮你解决第一个问题本人初中学几何很爱做的事就是把第一问解决了,后面的问题空着,没有深究的精神,鼓励你去做第二问∵三角形ABC为等腰直角三角形,∴AC=AB已知AD=AE,∠EAB=90°

如图,在等腰直角三角形ABC中,

证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH

如图,在等腰直角三角形abc中,∠b=90°,ab=bc,o是如图,在直角三角形ABC中,∠B=90度,AB=cb,O是

证明PE=DO因为,∠B=90度,AB=BC,所以三角形ABC为等腰直角三角形,又O是AC上的中点,所以BO垂直AC,∠C=∠CBO=45°由已知PB=PD可知△BPA为等腰三角形,∠PDB=∠PBD

如图1,在等腰直角三角形ABC与等腰直角三角形DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,C

:(1)FG⊥CD,FG=CD.(2)延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠E=∠A=

如图,在等腰直角三角形ABC中.

连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5

如图,三角形ABC是等腰直角三角形

50平方厘米,利用旋转

如图abc是等腰直角三角形

证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,∴AD=BD(与下面两式用大括号括起来)∠DAQ=∠DBPBP=AQ,∴△BPD≌△AQD(SA

如图,在等腰直角三角形ABC中,角B=90度,AB=BC=8,四边形PQCR是三角形ABC内的平行四边形,且SPQCR=

Sabc=32..所以刚好一半一半.AP=4再问:请问是怎么求的?再答:等腰直角。。CA平行于RP。。。所以RP垂直于AB。。所以那两个小三角形也是等腰之间三角形啦。。。然后S两个△之和是16.。。。

在等腰直角三角形ABC中,

如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y

如图等腰直角三角形ABC

,没有图额,图在哪?

如图,在等腰直角三角形ABC中

反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD