如图菱形ABCD中,AB=4,∠ABC=60°,对称中心为P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:14:12
(1)连接BD,∵E是AB的中点,且DE⊥AB,∴AD=BD(等腰三角形三线合一逆定理)又∵AD=AB,∴△ABD是等边三角形,∴∠ABD=60°.∴∠ABC=120°(菱形的对角线互相垂直平分,且每
∵ABCD是菱形∴OA=OC,OD=OB,AC⊥BDAD=AB=BC=CD∵DE⊥AB,E是AB中点(AE=BE=1/2AB=2)∴DE是AB中垂线∴BD=AC=AB即△ABD是等边三角形∴∠DAB=
之前算错了……图中你把CD画反了因为菱形对角线垂直,AC∶BD=1∶根号3,即图中AD∶BC=1∶根号3所以图中AO∶CO=1∶根号3勾股定理得图中AC=2AO图中AO=2图中CO=2倍根号3所以图中
AB=BC=4,又BE=EC,所以BE=EC=2,因为AE垂直于BC,所以BE^2+AE^2=AB^2,所以AE=2根号3,所以菱形ABCD的面积为8根号3
一题一题打给你吧!第一个是DE⊥AB,△AED为直角三角形,DE/AD=sinA,AD=DE/sinA=6/(3/5)=10菱形ABCD的周长=10*4=40sinA表示直角三角形中A角的正弦值,即对
证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)
因为E为AB中点,并且DE⊥AB,所以DE垂直平分AB,所以DA=DB,因为在菱形ABCD中,AB=AD,所以AB=AD=DB,所以△ABD是等边三角形,所以∠DAB=60°所以∠ABC=120°等边
设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2
话说应该是先求证:△AED≌△DFB,然后再求证△CDG≌△CBG'吧?先证明△AED≌△DFB:因为ABCD是菱形,所以AB=AD=BD=DC=BC,所以△ABD和△DCB是全等的等边三角形.所以角
NM垂直ADAM=2再问:能具体点吗?再答:菱形两条对边垂直角dab=60度AM=2AE=AB
因为DE⊥AE,且AE=2,AE=EB所以:在直角△AED中,AE=2,AD=4,所以:∠ADE=30°所以:∠DAB=60°所以:∠ABC=120°由棱形的性质知:∠AOB=90°,∠OAB=∠OA
因为菱形ABCDE是AB中点所以△DAE≌△DEB△ADE≌△DEB所以DB=DA=AB所以等边三角形DAB所以∠DBA=60因为菱形ABCD所以△DAB≌△DBC所以∠DBC=∠DBA=60所以∠A
在菱形ABCD中,AB=AC=BC=AD=CD,所以∠BCA=∠ACD=60度,所以∠BCD=120度.ABCD的面积为5*5=25
由菱形有BC=AB=AC=2m则有∠B=60°则∠BCD=120°周长为8m
解法1:因AB=BC=CD=DA所以四边形ABCD是菱形(根据:四条边都相等的四边形是菱形)解法2:因AB=CD,BC=DA所以四边形ABCD是平行四边形又AB=BC所以四边形ABCD是菱形(根据:有
∵形ABCD∴AC⊥BD,∠DAO=∠BAO∵AB⊥DE,OA=DE∴△DAO全等于△ADE∴∠ADE=∠DAO∴∠ADE+∠DAO+∠BAO=90∴∠ADE=∠DAO=∠BAO=30∴DE=AD×c
因为AB=5,OA=4,所以菱形的周长=5*4=20两条对角线的长AC=BD=4*2=8因为菱形的面积=2三角形ABC的面积,因为三角形ABC的面积=(1/2)*BD*OA=(1/2)*8*4=16所
∵菱形的对角线垂直平分∴∠AOB=90º,AO=½AC,BO=½BD根据勾股定理AB²=AO²+BD²∵AB=2,BO=√3AO∴AO=1,