如果 关系R和S是自反的,对称的和可传递的,证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:49:43
显然R∩R^-1是自反和传递的,因而只需证明R∩R^-1是对称的即可任给(x,y)属于R∩R^-1,即xRy且xR^-1y,则易知yR-1x且yRx即(x,y)属于R∩R^-1.所以R∩R^-1是对称
R是集合A上的一个自反,对称和传递的关系=>R是个等价关系所有...
R={<a,a><b,b><a,b><b,a><c,c><d,e><e,d><d,d><e,e>}就是把在一个括号里的写出自反,等价和对称.再问:哦,貌似是这样。可以再问你下其他问题吗?都是挺简单的?
若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.
1,自反加传递的选A2,不知道你的一对一是什么意思,如果是单射的意思就选A,若不是就选B3,非(P交Q)等价于非P并非Q选C4,选BP假Q假为真5,只有P真Q假时P->Q为假,选C6,X,Y为约束,Z
设关系为F(a,b)自反性=对任意元素a证F(a,a)成立反自反性=对任意元素a证F(a,a)不成立对称性=对任意两个元素,若F(a,b)证F(b,a)成立反对称性=对任意两个元素,若F(a,b)证F
证明:必要性显然充分性:因为若(a,b),(a,c)属于R,则(b,c)都属于R由(a,b)和(a,a)属于R,所以(b,a)属于R由(a,c)和(a,a)属于R,所以(c,a)属于R由(a,c)和(
在下不自量力来做一下?离散数学都忘得差不多了例题:R是集合X上的一个自反关系,求证:R是对称和传递的,当且仅当和在R中有在R中.证明:1)充分性:假设R是对称和传递的.R是对称的,且∈R=>∈RR是传
证明设R是集合X上的一个自反关系,如果R是X上对称和传递的,则当任意a,b,c∈X,若有∈R且∈R则∈R且∈R故得∈R反之,由∈R,∈R,必有∈R,则对任意a,b∈X,若∈R,因R是集合X上的一个自反
1、R是自反关系则(b,b)属于R2、当(a,b)属于R,利用1可以得到(b,a)属于R,对称性得证3、R具备反身、对称、传递故等价关系
1.既然要对称,DeltaA就在里面,其他的关于对角线成对出现,对角线以上共有1+2+3+...+(n-1)个元,故共有2^{1+2+3+...+(n-1)}个自反且对称的关系.2.那就是说,对角线不
eflexiveclosure(R)={,,,,,}Symmetricclosure(R)={,,,,,,,}ican'thelpyouwithyourtransitiveclosure!LetWbe
若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.
令C={(x,y)|x、y属于A},设D是C的某非空子集,如果(x,y)属于D,则称x,y有(由D规定的)关系,记为xy.(符号(*,*)表示两者组成的有序对).1.自反:如果(x,x)属于D总成立,
1、对任意x属于R-S,x属于R不属于S;因x属于R,故x的逆属于R;因x不属于S,故x的逆不属于S;故x的逆属于R-S.故R-S是对称关系.其他以后再来做啊.
自反Reflexive对称Symmetry传递Transfe
必要性:当r是a上的等价关系时,由等价关系的传递性,显然有属于r且属于r时,有属于r.充分性:由r是a上自反性关系,所以自反性自然成立.于是∈r,若∈r.则由∈r且∈r(注意书写顺序),有∈r,(若写
书上的这些关系性质的定义中,一阶逻辑公式的变项x,y的取值是全总个体域,所以辖域内有x∈A,y∈A的限制.实际上我们只是在集合A中考虑的,所以这些定义完全可以去掉那些x∈A,y∈A的限制.在集合A作为
就概念本质而言,你没有弄清楚.a,b具有任意性,当然不能去假定存在关系.利用对称性和传递性的前提,是二者已经存在关系的前提下,进行合理推理.而如果没有这个前提,怎么进行推理呢?再问:是不是这个意思,题