如果a(n阶矩阵)的秩是n-1,那么伴随矩阵的秩是1:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:30:48
如果a(n阶矩阵)的秩是n-1,那么伴随矩阵的秩是1:
如果N阶矩阵A满足A^2=A,则称A是幂等矩阵.证明幂等矩阵的特征值只能是0或1

因为A^2=A=AI,所以A(A-I)=0所以A或A-I的行列式等于0A的行列式等于0说明特征值是0A-I的行列式等于0说明特征值是1

如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵

证明:因为任一个n维非零向量都是n阶矩阵A的特征向量,所以n维基本向量组ε1,ε2,...,εn也是A的特征向量.设Aεi=kiεi,i=1,2,...,n则A(ε1,ε2,...,εn)=(Aε1,

证明:如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵.

设v是n阶矩阵A的特征值由题意矩阵特征值对应的线性无关特征向量的个数和是n说明:1)矩阵可对角化2)A满秩由于特征向量空间的维数和是n那么其中一最大线性无关组是e1..en;e1..en是单位矩阵的列

线性代数矩阵的问题如果A是m*n阶矩阵,那么r(A)=n是什么意思.额.我当然知道那是A的秩是n.但是对于一个3*2阶的

既然矩阵是m×n的,不是方阵,也就没有对应的行列式了,长方形的矩阵变不出正方形的行列式矩阵的秩要小于该矩阵的行数或者列数,换句话说行数和列数两者中较小的也不比秩小.所谓秩就是非零子式最高阶数,如果矩阵

证明如果A是n阶方阵,A*是A的伴随矩阵,那么 R(A*)=①n,R(A)=n,②1,R(A)=n-1,③R(A)=0,

当R(A)=n时,有A可逆,|A|≠0,由AA*=|A|E,说明A*可逆,R(A*)=n当r(A)=n-1时,有A不可逆,|A|=0所以AA*=|A|E=0,所以r(A*)<=n-r(A)=1.

n阶矩阵A是n阶单位矩阵里的零全变成a.若矩阵A的秩为n-1,则a必为多少?

|A|=[1+(n-1)a](1-a)^(n-1)因为r(A)=n-1所以|A|=0所以a=1或a=1/(1-n)但a=1时r(A)=1所以a=1/(1-n)再问:第一步是怎么来的?再答:1.����

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

证明:如果a是n阶正定矩阵,则a*及a+a*也是正定矩阵

1、对称性显然2、a*=|a|a^(-1)3、a正定则特征值全为正,从而a^(-1)的特征值为正4、容易看出a*,a+a*的特征值为正,正定

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

线性代数矩阵的问题如果A是m*n阶矩阵,那么r(A)=n是什么意思.我当然知道那是A的秩是n.但是对于一个3*2阶的矩阵

当且仅当m=n时,det(A)才有定义.一般矩阵的秩r(A)可以从不同角度定义,其意义都是等价的,如:r(A)=矩阵的行秩,即行向量的极大线性无关组中向量的个数;r(A)=矩阵的列秩,即列向量的极大线

证明:如果n阶矩阵A与对角型矩阵合同,则A是对称矩阵.

这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从

请教一个线性代数的问题 如果A是n阶矩阵,Ax=0仅有0解,那么秩为n.如果A是m×n矩阵,A

当m>n时,r(A)≤n,仅有0解是r(A)=n当m再问:就是说不是看m或者n,看方程组和未知数的个数的比较再答:看系数矩阵的秩和未知量个数,也即矩阵的列数的比较。

证明,如果n阶实对称矩阵A=(aij)n*n是正定的,则aii>0

证:由A正定,对任意非零n维列向量x,都有f(x)=x'Ax>0.特别取x=εi=(0,...,0,1,0,...,0)',--第i个分量为1其余为0则有f(εi)=εi'Aεi=aii>0.

a是m*n矩阵,b是n*m矩阵,ab是几阶矩阵?如果是m阶矩阵,为什么?题目中未说明m和n的大小?

是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.

如果n阶矩阵A的秩是n-1,且a1,a2是Ax=b的两不同解 则Ax=b的通解

如果n阶矩阵A的秩是n-1,表明其基础解系只有一个而a1,a2是Ax=b的两不同解则其基础解系可由a1-a2表示,故其通解为X=K(a1-a2),K为任意数再问:可是这个通解是导出组的解吧?如果是要求

逆矩阵定义问题对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则说矩阵A是可逆的,并把B矩阵称为A的逆矩阵.如果

可以.因为AB=E,所以|A||B|=|AB|=|E|=1.所以A的行列式不等于0,故A可逆.且A^-1=A^-1E=A^-1AB=B.满意请采纳^_^