如果A是m*n实矩阵,那么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:00:16
如果A是m*n实矩阵,那么
请解一线性代数题:设A是n*m矩阵,B是m*n矩阵,其中n

由于:R(B)>=R(AB).定理(条件一)B是m*n矩阵,所以R(B)=n且R(B)

A是m*n矩阵,B是n*m矩阵,m>n,证明:|AB|=0

R(A)和R(B)的秩都小于等于n,而AB是m*m的方阵,m>n,所以AB不是满秩阵,所以|AB|=0

线性代数矩阵的问题如果A是m*n阶矩阵,那么r(A)=n是什么意思.额.我当然知道那是A的秩是n.但是对于一个3*2阶的

既然矩阵是m×n的,不是方阵,也就没有对应的行列式了,长方形的矩阵变不出正方形的行列式矩阵的秩要小于该矩阵的行数或者列数,换句话说行数和列数两者中较小的也不比秩小.所谓秩就是非零子式最高阶数,如果矩阵

如果A是一个m*n矩阵B是一个n*m矩阵,若m>n证明|AB|=0.

本题是一些基础知识点的堆积....秩总是越乘越小的.r(AB)

设A是m*n实矩阵,n

由已知,r(A)=r(A,b)=n又因为A是实矩阵,故有r(A'A)=r(A)=n所以A'A是n阶可逆矩阵

证明 设A,B分别是s*n,n*m矩阵,如果AB=0,则rank(A)+rank(B)

AX=0,线性方程组的基础解系个数为n-rank(A).由AB=0,B的列向量是AX=0的解,从而B的列向量线性无关的向量个数小于等于n-rank(A)所以rank(B)≤n-rank(A)即ran(

设A是m*n矩阵,B是n*m矩阵,其中n

R(E)=n=R(AB)≤R(B)≤n,∴R(B)=n=B的“列秩”=B的列数.∴B的列向量组线性无关.

线性代数矩阵的问题如果A是m*n阶矩阵,那么r(A)=n是什么意思.我当然知道那是A的秩是n.但是对于一个3*2阶的矩阵

当且仅当m=n时,det(A)才有定义.一般矩阵的秩r(A)可以从不同角度定义,其意义都是等价的,如:r(A)=矩阵的行秩,即行向量的极大线性无关组中向量的个数;r(A)=矩阵的列秩,即列向量的极大线

设A是n*m阶矩阵,B是m*n阶矩阵,如果En-AB是可逆矩阵,(E是单位矩阵),证明:Em-BA也是可逆矩阵

证:因为(E-BA)[E+B(E-AB)^-1A]=E-BA+B(E-AB)^-1A-BAB(E-AB)^-1A=E-BA+B(E-AB)(E-AB)^-1A=E-BA+BA=E.所以E-BA可逆,且

请教一个线性代数的问题 如果A是n阶矩阵,Ax=0仅有0解,那么秩为n.如果A是m×n矩阵,A

当m>n时,r(A)≤n,仅有0解是r(A)=n当m再问:就是说不是看m或者n,看方程组和未知数的个数的比较再答:看系数矩阵的秩和未知量个数,也即矩阵的列数的比较。

矩阵AB=AC,A不等于0矩阵,如果A是m*n矩阵,且R(A)=n,则为啥能推出B=C?

AB=AC,则A(B-C)=0所以B-C是由Ax=0的解空间中向量构成的矩阵A即便不是零矩阵,只要A的行列式等于0,Ax=0也能有非零解,故B-C可以不等于零而A是m*n矩阵,r(A)=n时,Ax=0

线性代数问题如果A是m*n矩阵,B是n*m矩阵,则在m,n是什么关系的时候,必有|AB|=0

当m>n时必有AB的行列式|AB|=0,这是Cauchy-Binet定理的一个内容.你可以参考百科.

设A是m*n的实矩阵,且rank(A)=n,证明A^T A是正定矩阵

对任何非0的n维实向量X,由于rank(A)=n,则AX!=0,从而有X^T(A^TA)X=(AX)^T(AX)=|AX|^2>0故A^TA是正定阵

设A为m×n实矩阵(m≠n).E是n×n单位矩阵,证明E+A∧TA是正定对称阵.

利用定义就可以了,对任意的非零向量xx^T(E+A^TA)x=x^Tx+(Ax)^T(Ax)>0

a是m*n矩阵,b是n*m矩阵,ab是几阶矩阵?如果是m阶矩阵,为什么?题目中未说明m和n的大小?

是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.

如果A是正定矩阵,那么A一定是实对称矩阵对吗?

显然不对,比如矩阵A:第一行3,4第二行4,6.这不是对称阵,但是它是正定矩阵.正定判定如下:计算二次型(x1,x2)A(x1,x2)^T=3(x1^2+2x1x2+2x2^2)=3((x1+x2)^