如果G Z(G)是循环群,则G交换
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:20:17
解题思路:字形结合字义理解记忆解题过程:BA汗流浃背B消极怠工略胜一筹C耳提面命D一脉相承最终答案:略
显然中心Z(G)是G的一个正规子群,如果G/Z(G)是循环群,且则G/Z(G)=时:令xH,yH属于,且xH=的s次方,yH=的t次方,则xH=a的s次方*H,yH=a的t次方*H,所以有p属于H和q
(1)G有4个生成元,分别为a,a^3,a^7,a^9.(2)非平凡的子群共有2个,分别为:A1=={e,a^2,a^4,a^6,a^8},A2=={e,a^5}A1的左陪集分解为:{e,a^2,a^
1^(1/q)的解不唯一若x=1^(1/q)则x^q=1h也是上式的根(1/q)的结果不是映射,不是一个合理的运算
任取a,b属于G.那么a^2=e,b^2=e,且ab属于G.那么(ab)^2=e故abab=e=a^2b^2故ba=ab故G可交换.
证明:充分性:由数论(m,n)=1的充分必要条件是存在整数s、t使ms+nt=1,所以a=a^(ms+nt)=a^ms*(a^n)^t=a^ms这说明a^m可以生成a,又G=,所以G可以由a^m生成.
1,此题如果M在BC中点,那么两个三角形全等,不符合题意.有两种情况,一是M靠近B点,而是M靠近C点.两个钟情况得出的结果是互为倒数的.只能是△BDM相似于△CME,则,BM:BD=CE:CM,那么,
∵△ABP为等边三角形,∴BP=AB,∠ABP=∠APB=60°,∴∠PBC=90°-60°=30°,在正方形ABCD中,BP=BC,∴∠BCP=∠BPC=12×(180°-30°)=75°,∴∠PC
证明由拉格郎日定理可知,四阶群的元素的阶一定能整除群的阶4,故四阶群的元素的阶只能是1(幺元是唯一的1阶元),2,4,如果有一个元是4阶元,则该元自乘能生成群的所有元素,此时它是循环群,这个4阶元素是
这取决于你对树的定义是怎么给的.比如,对于我,树的定义可以是没有圈的连通图,也可以是边数等于顶点数-1的连通图等等再问:能写一下证明过程吗再答:你把定义写出来我才能回答啊
应该是证明:存在G到F的满同态,当且仅当m|n.G=作为n阶循环群,其中的元素可表示为a^i,0≤i充分性:若m|n,可设n=mk.定义映射φ:G→F,φ(a^i)=b^i,0≤i由F=是m阶循环群,
ABCD中对角线相互平分,AOD三角形中,E、H时两条边中点,根据三角形中位线定理,EH平行且等于二分之一AD,同理得出EF、FG、GH,那么EH//且=FG,EF//且=GH,所以EFGH是平行四边
克除以厘米的立方,是单位
/>G有p^k阶元,但是它的任何真子群里元素的阶最大是p^(k-1),直和也是一样.找出Z2*Z3的一个生成元即可,比如(1,1);Z2*Z2里的元素的阶最大是2,而Z4里有4阶元,也可以看第一题.<
水的体积=(195-50)÷1=145立方厘米金属体积=145-(229.5-50-44.5)÷1=10立方厘米密度=44.5÷10=4.45克/立方厘米
有限群的子群的阶数是母群的因子,6的因子有{1,2,3},故有3个子群,分别是,{e},即单位元群,e=a^0,,即