如果x,y,z都是正数,且满足x y-5z=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:04:04
如果x,y,z都是正数,且满足x y-5z=0
已知正数xyz,满足x+y+z=xyz 已知正数x,y,z满足x+y+z=xyz,且不等式1/x+y+1/y+z+1/z

配凑柯西不等式1/(x+y)+1/(y+z)+1/(z+x)≤[1/2(xy)^0.5]+[1/2(yz)^0.5]+[1/2(zx)^0.5]=(1/2){1*[z/(x+y+z)]^0.5+1*[

1,设x,y满足x+y=40,且x,y都是正数,则xy的最大值是多少

都是同类题:基本不等式a+b≧2√ab(1)40=x+y≧2√xy,即20≧√xy,所以xy≦400;即xy的最大值是400;(2)a+b≧2√ab,把ab=10代入,得:a+b≧2√10,即a+b的

己知x,y, z都是非零有理数,且满足|x|/x+|y|/y+z/|z|=1,请你求xyz/|x

一个数的绝对值与这个数的商只有两种情况1或-1,所以前面必为1,1,-1,所以两个正数,一个负数,所以结果为-1

若2x=3y=5z,且x,y,z都是正数,则2x,3y,5z从小到大依次为______.

令2x=3y=5z=t,则t>1,x=lgtlg2,y=lgtlg3,z=lgtlg5,∴2x−3y=2lgtlg2−3lgtlg3=lgt•(lg9−lg8)lg2•lg3>0,∴2x>3y;同理可

已知正数x,y,z满足5x+4y+3z=10

这么简单的题目,你们不要老是依靠答案,要自己算出答案来,就算错了,那也是你自己算出来的,就算你骗了老师,但你同事也骗了你自己

已知 x y z都是正数 且xy+yz+zx=1 则x+y+z的最小值是

x,y,z均为正数,xy+yz+zx=1,求x+y+z的最小值设M=2(x+y+z)²  则M=2x²+2y²+2z²+4xy+4yz+4zx=(x²

已知x、y、z都是实数,且满足条件已知xyz为实数,且满足x+2y-z=6,x-y+2z=3,则x^2+y^2+z^2的

x+2y-z=6所以2x+4y-2z=12因为x-y+2z=3两边相加3x+3y=15x+y=5带回去得到y=5-xz=4-x带回x^2+y^2+z^2=3x^2-18x+41=3(x^2-6x+9)

已知X,Y,Z都是非零有理数,且满足|X|/X+|Y|/Y+|Z|/Z=1.请你求XYZ/|XYZ|的值

因为|a|/a不是等于1就是-1,故|X|/X+|Y|/Y+|Z|/Z=1代表其中XYZ中有两个大于0,一个小于0故XYZ/|XYZ|=-1

设x、y、z都是大于1的实数,且满足(见图)

1、设x-1=a,y-1=b,z-1=c;则x=a+1,y=b+1,z=c+1.则原式可化为(a+1)+(b+1)+(c+1)+3/a+3/b+3/c=2(根号(a+3)+根号(b+3)+根号(c+3

己知x,y,z都是非零有理数,且满足|x|/x+|y|/y+z/|z|=1,请你求xyz/|xyz|的值.求因为所以?

因为|a|/a不是等于1就是-1,故|X|/X+|Y|/Y+|Z|/Z=1代表其中XYZ中有两个大于0,一个小于0故XYZ/|XYZ|=-1

已知x ,y ,z都是正数且满足xyz(x+y+z)=1试求(x+y)(y+z)取得最小值时x,y,z的值各是多少?

(x+y)(z+y)=xz+y(x+y+z)因xyz(x+y+z)=1=xz+1/xz=(√xy-1/√xy)²+2>=2当xy=1时取得最小值取得最小值时的x,y,z并不唯一.

已知x,y,z都是正数, 且x^3+y^3+z^3=3xyz, 求证:x=y=z.

证:x立方+y立方+z立方-3xyz=0(x+y)立方+z立方-3xy(x+y)-3xyz=0(x+y+z)[(x+y)平方-z(x+y)+z平方]-3xy(x+y+z)=0(x+y+z)(x平方+2

已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2

柯西【x^2/(y+z)+y^2/(x+z)+z^2/(x+y)】*(y+z+x+z+x+y)≥(x+y+z)^2即x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥(x+y+z)/2=(3

已知x,y,z都是正数,且xyz=1,求证:xy(x+y)+yz(y+z)+zx(z+x)》6

左边=xy(x+y)+yz(y+z)+zx(z+x)=1/z(x+y)+1/y(x+z)+1/x(x+y)=x/z+z/x+y/x+x/y+z/y+y/z因为x,y,z都是正数,x/z+z/x=(√x

已知x,y,z都是正数,且3^x=4^y=6^z 求证 1/z-1/x=1/2y

如此简单3^x=4^y=6^z=t-->x=10g3(t)y=log4(t)z=log6(t)-->1/x=logt(3)1/y=logt(4)1/z=logt(6)-->1/z-1/x=logt(6

若x,y,z都是正数,且3x+2y-z=4,求x+y+z的取值范围.

这种题目的思路是这样的:已知一个三元一次方程组,求另一个三元函数的取值范围,就要吧三元函数化为一个一元函数,也就是要把y和z都变成x.由3x+2y-z=4和2x-y+2z=6,将已知的两个方程相加可以

如果b是a和c的等差中项,y是x和z的等比中项,且x,y,z都是正数.则(b-c)logmx+(c-a) lo

设等差数列公差为d,∵m>0且m≠1,∴(b-c)logmx+(c-a)logmy+(a-b)logmz=-dlogmx+2dlogmy-dlogmz=d(2logmy-logmx-logmz)

正数x,y,z满足5x+4y+3z=10

仔细观察:可令5x=a4y=b3z=c那么原条件即为:a+b+c=10即求证:a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=10由柯西不等式:【(b+c)+(a+c)+(a+b)】*【

正数x、y、z满足方程组

用几何方法做