如果二次函数y=x² mx (m 3)有两个不同的零点,则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:03:51
1、顶点为(m,m+1\4),在y=2x-1中x=m,y=2m-1,所以m+1\4=2m-1所以m=4\52、△
把二次函数的解析式配方,配成顶点式y=x²+2mx+m²+m-1=(x²+2mx+m²)+m-1=(x+m)²+m-1顶点坐标是(-m,m-1)再把x
Δ=m^2-4×1×(m-2)=m^2-4m+8=(m-2)^2+4>0所以抛物线总与x轴有两个交点
1.图像与x轴有2个交点,所以判别式大于0对于第一个函数,Δ=m²-4(m²+1)/2=m²-2(m²+1)=-m²-20所以y=x²-mx
y=(x+m/2)^2+10-m^2/4顶点(-m/2,10-m^2/4)代入直线:10-m^2/4=3(-m/2)得:m^2-6m-40=0(m-10)(m+4)=0m=10或-4m=10,顶点为(
A(1,0)则x=1时y=0所以0=2-m-m²m²+m-2=0(m+2)(m-1)=0m=-2,m=1由韦达定理x1+x2=m/2x1=1x2=m/2-1m=-2,x2=-2m=
对称轴为x=-m/6=-1,m=6
-2a分之b=-1-(m/2*5)=-1m=10C.10
1、可得二次函数解析式为:y=-(x-3)²+4=-x²+6x-5所以可得:m=6,n=-52、当y=0时有:-x²+6x-5=0(x-5)(x-1)=0解得:x=1或x
解y=x²-2mx+m²-1过(0,0)∴m²-1=0∴m=1或m=-1当m=1时,y=x²-2x当m=-1时,y=x²+2x当m=2时,y=x
解(1)由题目所给方程可知两函数开口向上有最低点,根据顶点坐标:(-b/2a,(4ac-b²)/4a)对于y=x²-mx+(m²+1)/2,最低点纵坐标y=(4ac-b&
y=x^2-2mx+4m-8=(x-m)方-m方+4m-8对称轴为x=m所以当x再问:谢谢呢!!再答:不好意思打错啦应该是m>=2再问:(2)以抛物线y=x^2-2mx+4m-8的顶点A为一个顶点作该
证:因为二次函数根判别式=b^2-4ac=m^2-4*2*(-m^2)=7m^2≥0,所以二次函数图像与x轴恒有一个或两个公共点.
y=(x-m)^2-m^2+4m-8,则顶点A的坐标为(m,-m^2+4m-8),设点M的坐标为(m+t,t^2-m^2+4m-8)(t>0),由对称性可知点M的坐标为(m-t,t^2-m^2+4m-
﹙1﹚二次函数y=x²+2mx-m+1(m为常数)即是y=﹙x+m﹚²-m²-m+1∴它的顶点是:P﹙-m,-m²-m+1﹚不论m为何值,满足函数:y=-x
第一小题依题意令x=0,y=1,则有m+3=1解得m=-2第二小题依题意因为要求函数最小值,所以m>0有-b/2a=-2解得m=2祝学习天天向上,不懂可以继续问我再问:再问你一个哈--已知二次函数y=
(1)y=(x-m)^2-m^2+4m-8对称轴是x=m,又当x≤2时,函数值y随x的增大而减小,那么m的取值范围m>=2.(2)顶点A的坐标为(m,-m2+4m-8)△AMN是抛物线的内角正三角形,
解析:由题意可设函数的图像与x轴的交点坐标为A(x1,0)、B(x2,0)则可知x1和x2是方程2x²-4mx+m²=0的两个不同的实数根由韦达定理有:x1+x2=2m,x1*x2
配方:y=(x+m/2)^2+10-m^2/4顶点为(-m/2,10-m^2/4)代入y=3x,得:10-m^2/4=-3m/240-m^2=-6mm^2-6m-40=0(m-10)(m+4)=0m=