如果关于X的方程X 2 2=-2A 3 X
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:18:06
解;x12+x22=4,即x12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x2)2-2x1•x2=4,又∵x1+x2=2(k-1),x1•x2=k2,代入上式有4(k-1)2-2k
x1+x2=-2/mx1x2=1/mx1²+x2²=(x1+x2)²-2x1x2=14/m²-2/m=1即m²+2m-4=0m=-1±√5有解则4-4
根据一元二次方程的根与系数的关系知:x1+x2=2a,x1x2=a2-2a+2.x12+x22=(x1+x2)2-2x1x2=(2a)2-2(a2-2a+2)=2a2+4a-4=2.解a2+2a-3=
由题意可知x1+x2=k+2,x1•x2=2k+1,∵x12+x22=(x1+x2)2-2x1x2,∴x12+x22=(k+2)2-4k-2=11,k1=3,k2=-3,当k1=3时,△<0,所以k=
x2+2x+1=m2即x2+2x+1-m2=0x12-x22=0即(x1+x2)(x1-x2)=0第一种情况x1=x2则△=0,把带有m的△代进去就可以算出答案了第二种情况x1+x2=0此时△>0那x
根据题意得x1+x2=-2a,x1•x2=a2+4a-2,x21+x22=(x1+x2)2-2x1•x2=(-2a)2-2(a2+4a-2)=2a2-8a+4=2(a-2)2-4,∵2(a-2)2≥0
∵x1、x2是方程x2-(m-1)x+2m=0的两个实数根.∴x1+x2=m-1,x1•x2=2m.又∵x12+x22=x12+x22+2x1x2-2x1x2=(x1+x2)2-2x1x2.将x1+x
∵关于x的方程x2-ax+a+3=0(a为实数)的两个实数根,∴△=(-a)2-4(a+3)≥0,即(a+2)(a-6)≥0,解得,a≥6,或a≤-2;由根与系数的关系可得:x1+x2=-a,x1•x
设x1,x2是关于x的方程x²-(k+2)x+2k+1=0的两个实数根,且x1+x2=11根据"韦达定理"得:x1+x2=k+2=11k=9.x1+x2=11,x1x2=2k+1=19(2)
x的方程a(x-2)=b(1-x)+3有无数多个解实际上说明这是一个恒等式,式子左右x项常数项系数相等即a=-b-2a=b+3得a=3,b=-3ab=-9
由韦达定理,有:x1+x2=k+2、x1x2=2k+1,又x1^2+x2^2=11,∴(x1+x2)^2-2x1x2=11,∴(k+2)^2-2(2k+1)=11,∴k^2+4k+4-4k-2=11,
x21-x22=0这个式子看不懂什么意思再问:就是x1的平方-x2的平方=0再答:再问:对不起,谢谢你,孩子去吃饭了,一会回来让她试试看明白不明白。这是初三的知识,要求用韦达定理
此方程是关于x的一元一次方程,则x的指数为1,即3a1=1,就可以求出a的值了.
x1+x2=mx1*x2=2m-1X1的平方+X2的平方=(x1+x2)的平方-2*x1*x2=m的平方-4m+2=7m=5(舍去)或m=-1因为m的平方-4*(2M-1)>0(x1-x2)的平方=(
你的题是不是有问题啊!k的值可以确切求出来,怎么还要求取值的?解法:因为x^2-2kx+k^2+3k-1=0,所以就由,△=b^2-4ac求出4k^2-4k^2-12k+4>=0,k=有韦达定理可以得
x的指数是1,系数不能为0根据题意得|a|-1=1a+2≠0∴a=2当a=2时.方程可化为4x+5=-3∴x=-2
∵关于x的方程x2-px+q=0的两根分别是x1、x2,∴x1+x2=p,x1•x2=q,∴x12+x22=(x1+x2)2-2x1•x2=p2-2q=7,即p2-2q=7,①1x1+1x2=x1+x
x1+x2=2k,x1*x2=1-k^2有两个实根4k^2-4(1-k^2)>=08k^2-4>=0k^2>=1/2x1^2+x2^2=(x1+x2)^2-2x1x2=4k^2-2(1-k^2)=6k
∵x1、x2是关于x的方程x2+mx+m2-m=0的两个不相等的实数根,∴△=m2-4(m2-m)>0,即0<m<43,且x1+x2=-m,x1x2=m2-m,可得x12+x22=(x1+x2)2-2