如果圆O1与圆O2相交,O1O2=4,圆O1的半径是3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:14:30
如果圆O1与圆O2相交,O1O2=4,圆O1的半径是3
如图圆O1与圆O2相交于AB两点.圆O1在圆O2上,圆O2的直径AC交圆O1于点D,CB的延长线交圆O1于E,说明AD=

不是“圆O1在圆O2上”,应该是“O1点在圆O2上”,改正后证明如下.连接AB,在⊙O2中,∵AC是直径,∴∠ABC=90°,∠ABE=90°,在⊙O1中,连接AE和ED,∵∠ABE=90°,∴AE是

如图 已知圆o1与 圆o2相交于a b两点延长圆O1直径CA交圆O2于点D,延长圆O1的弦CB交O1的弦CB

连接BD和AE!角DAE=DBC(同弧所对的角相等)△BCD相似△CAE设AD=X则BC=2XBE=4X根据相似三角形定理有CD/CE=BC/AC即(6+X)/6X=2X/6解得X=1.5所以BE=6

已知圆O1与圆O2相交于A和B两点,圆O1的弦AC切圆O2于A,EF是过B点的割线,交圆O1于E,交圆O2于F.求证CE

因为AC为圆O2的切线,所以,∠CAB=∠AFB又因为∠BAC=∠CEB所以∠CEB=∠AFB所以CE∥AF再问:为什么∠CAB=∠AFB用做什么辅助线吗再答:弦切角等于所含弧上的圆周角

已知:如图,圆O1与圆O2相交于AB两点,且圆心O1在圆O2上,圆o2的直径AC交圆O1与点D,CB的延长线交圆O1于E

连接AB,在⊙O2中,∵AC是直径∴∠ABC=90°,∠ABE=90°在⊙O1中,连接AE和ED∵∠ABE=90°∴AE是直径,O1点在AE上,∠EDA=90°连接CO1,∵O1点在⊙O2上∴∠CO1

如图+已知圆O1与圆O2相交于A,B两点,圆O1在圆O2上,AC是圆O1的直径,直线CB与圆O2相交于点D,连接AD

1,AC是圆O1的直径,所以∠ABC=90度,所以∠ABD=90度,即,AD是圆O2的直径2,AD是圆O2的直径,所以∠AO1D=90°,因为AO1=O1C,DO1⊥AC,所以DO1是AC的垂直平分线

如图,已知圆O1与圆O2相交于A丶B两点,O1在圆O2上,AC是圆O1的直径,直线CB与圆O2相交于点D,连接AD.

证明:1、连接AB在圆O1中,AC是直径∴∠ABC=90°∴∠ABD=90°∴AD是圆O2的直径2、连接DO1(画图时忘记连了,自己连接)∵AD是圆O2的直径,O1在圆O2上∴∠AO1D=90°∴DO

已知圆O1与圆O2相交于A、B两点,点O1在圆O2上,C为O2上一点(不与A,B,O1重合),直线CB与圆O1交于另一点

根据C所外位置情况可分为两种情况,C在弧O₁A和  弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁

如图所示,已知圆O1和圆O2相交于A,B两点,圆O1在圆O2,AC是圆O1的直径,CB与圆O2相交于点D,连接AD.

连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径,∠AO1D=90°,∵AO1=O1C,DO1⊥AC,∴DO1是AC的垂直

如图,已知圆O1与圆O2相交于点A、B,O1在O2上,AC是圆O1的直径,直线CB

证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=

如图圆O1与圆O2相交于AB两点.圆O1在圆O2上,圆O2的弦bc切圆O1于点b,延长bo1,ca叫与p,pb与圆o1交

连结AO1.∵BC切⊙O1于B,∴∠CBO1=90°.∵AO1BC是圆内接四边形,∴∠PAO1=∠CBO1=90°,∴AC是⊙O1的切线.

如图,已知圆O1与圆O2相交于A,B两点,过点A作圆O1的切线,交圆O2于点C,过点B作两圆的割线分别交圆O1,O2于,

第一个问题:∵PA切⊙O1于A,∴∠BAC=∠ADE.∵A、B、C、E共圆,∴∠BAC=∠CED.由∠BAC=∠ADE、∠BAC=∠CED,得:∠ADE=∠CED,∴AD∥EC,∴PA/PC=PD/P

如图,两等圆○O1与○O2相交于AB两点,连心线O1O2交○O1于点D,交○O2于点C

因为是等圆,所以他们的半径相等,链接AO1,BO1,AO2,BO2,可得AO1BO2为菱形,(因为四条边都是半径都相等),所以他的对角线互相垂直(菱形的性质),可知ABCD的对角线也垂直.所以也是菱形

如图,已知圆O1与圆O2相交于点A,B,点O1在圆O2上,AC是圆O1的直径,CB的延长线与圆O2相交于点D,连接AD.

证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=

如图所示,已知圆O1与圆O2相交于AB两点,过点A的直线分别交圆O1,圆O2于EF两点,过点B

连接AB,根据圆的内接四边形的性质,易证得∠F+∠E=180°,因此CE∥DF,即四边形CDFE是平行四边形;由平行四边形的性质即可证得CE=DF.连接AB;∵∠CAB=∠F,CD∥EF;∴∠C+∠E

如图圆O1与圆O2相交于AB两点PT切圆O1于A,交圆O1于P,PB的延长线交圆O1于C,CA的延长线交圆O2于F

1.D在哪里2.E在哪里3.F在哪里2.应该为PT切圆O1于A,交圆O2于P吧

两个半径相等的圆O1和圆O2,相交与A,B两点,且圆O1经过圆心O2,求角O1AB的度数

连接O2A、O2B、O1O2∵两个半径相等的圆O1和圆O2∴O1A=O2A=O1O2∴等边△AO1O2∴∠O1AO2=60∵两圆相交于AB∴O1O2⊥AB∴∠O1AB=∠O1AO2/2=30°

已知圆O1与圆O2相交于A,B 圆O2的圆心在圆O1上 P为圆O1上一点 PA的延长线交圆O2于D点 PB交圆O2于C点

解题要领:①解答数学图形题,首先正确吃透题意,快速理解或画出图形;②准确的图形能帮助、引导自己快速形成思路;③这类题的解法,一般采用“倒推法”.证明思路:采用“倒推法”(1)要想证明出PA:AD=PC

已知两圆⊙o1与⊙o2相交与A,B两点,且AB=6,⊙O1的半径为4cm,⊙o2的半径为5cm,求⊙o1与⊙o2的圆心距

连接O1A、O1B;O2A、O2BO1O2与AB的交点为M根据圆的性质知道AB⊥O1O2在RT△O1MA中,O1M=√7在RT△O2MA中,O2M=4∴O1O2=4+√7

已知:⊙O1与⊙O2相交于A、B两点,O1在⊙O2上,AC是圆O1的切线,交圆O2与C,BO1的延长线与CA的延长线交与

 这个问题缺少条件,无法证明 只能得出△PBC是直角三角形的结论 理由很简单: 连接O1A 因为AC是圆O1的切线 所以O1A⊥AC,&nb