如果圆O1与圆O2相交,O1O2=4,圆O1的半径是3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:14:30
不是“圆O1在圆O2上”,应该是“O1点在圆O2上”,改正后证明如下.连接AB,在⊙O2中,∵AC是直径,∴∠ABC=90°,∠ABE=90°,在⊙O1中,连接AE和ED,∵∠ABE=90°,∴AE是
连接BD和AE!角DAE=DBC(同弧所对的角相等)△BCD相似△CAE设AD=X则BC=2XBE=4X根据相似三角形定理有CD/CE=BC/AC即(6+X)/6X=2X/6解得X=1.5所以BE=6
因为AC为圆O2的切线,所以,∠CAB=∠AFB又因为∠BAC=∠CEB所以∠CEB=∠AFB所以CE∥AF再问:为什么∠CAB=∠AFB用做什么辅助线吗再答:弦切角等于所含弧上的圆周角
连接AB,在⊙O2中,∵AC是直径∴∠ABC=90°,∠ABE=90°在⊙O1中,连接AE和ED∵∠ABE=90°∴AE是直径,O1点在AE上,∠EDA=90°连接CO1,∵O1点在⊙O2上∴∠CO1
1,AC是圆O1的直径,所以∠ABC=90度,所以∠ABD=90度,即,AD是圆O2的直径2,AD是圆O2的直径,所以∠AO1D=90°,因为AO1=O1C,DO1⊥AC,所以DO1是AC的垂直平分线
证明:1、连接AB在圆O1中,AC是直径∴∠ABC=90°∴∠ABD=90°∴AD是圆O2的直径2、连接DO1(画图时忘记连了,自己连接)∵AD是圆O2的直径,O1在圆O2上∴∠AO1D=90°∴DO
根据C所外位置情况可分为两种情况,C在弧O₁A和 弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁
连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径,∠AO1D=90°,∵AO1=O1C,DO1⊥AC,∴DO1是AC的垂直
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
连结AO1.∵BC切⊙O1于B,∴∠CBO1=90°.∵AO1BC是圆内接四边形,∴∠PAO1=∠CBO1=90°,∴AC是⊙O1的切线.
第一个问题:∵PA切⊙O1于A,∴∠BAC=∠ADE.∵A、B、C、E共圆,∴∠BAC=∠CED.由∠BAC=∠ADE、∠BAC=∠CED,得:∠ADE=∠CED,∴AD∥EC,∴PA/PC=PD/P
因为是等圆,所以他们的半径相等,链接AO1,BO1,AO2,BO2,可得AO1BO2为菱形,(因为四条边都是半径都相等),所以他的对角线互相垂直(菱形的性质),可知ABCD的对角线也垂直.所以也是菱形
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
见图. 另,似乎只要D不取B点,情况都成立
连接AB,根据圆的内接四边形的性质,易证得∠F+∠E=180°,因此CE∥DF,即四边形CDFE是平行四边形;由平行四边形的性质即可证得CE=DF.连接AB;∵∠CAB=∠F,CD∥EF;∴∠C+∠E
1.D在哪里2.E在哪里3.F在哪里2.应该为PT切圆O1于A,交圆O2于P吧
连接O2A、O2B、O1O2∵两个半径相等的圆O1和圆O2∴O1A=O2A=O1O2∴等边△AO1O2∴∠O1AO2=60∵两圆相交于AB∴O1O2⊥AB∴∠O1AB=∠O1AO2/2=30°
解题要领:①解答数学图形题,首先正确吃透题意,快速理解或画出图形;②准确的图形能帮助、引导自己快速形成思路;③这类题的解法,一般采用“倒推法”.证明思路:采用“倒推法”(1)要想证明出PA:AD=PC
连接O1A、O1B;O2A、O2BO1O2与AB的交点为M根据圆的性质知道AB⊥O1O2在RT△O1MA中,O1M=√7在RT△O2MA中,O2M=4∴O1O2=4+√7
这个问题缺少条件,无法证明 只能得出△PBC是直角三角形的结论 理由很简单: 连接O1A 因为AC是圆O1的切线 所以O1A⊥AC,&nb