如果抛物线y=ax的平方十bx c过顶点M(1,1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:09:08
由抛物线y=ax平方+bx+c与抛物线y=2x平方的形状相同,得,a=2,由顶点坐标(2,-1),由顶点式,∴y=2(x-2)^2-1=2x^2-8x+7
抛物线开口向下,有a<0,得不出{x|ax平方+bx+c<0}=空集.故原命题与逆否命题为假逆命题为假,若{x|ax^2+bx+c<0}=空集,则Max(y)≥0,开口向上否命题为假
题目不全,方程中的+-号看不见
(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,
y=ax的平方+bx+c开口向下,∴a<0过A(0.1)和M(2,-3)∴1=0+0+c,c=1-3=4a+2b+1,2a+b=-2(1)如果抛物线的对称轴为直线x=-1,-b/(2a)=-1b=2a
C将该抛物线下移5个单位,得y=ax²+bx+c-5顶点坐标为(-1,0)所以y=ax²+bx+c-5与x轴只有一个交点所以ax²+bx+c-5=0有两个相等的实数根
如a>0时(1)顶点在y轴的负方向.(2)顶点在X轴上.(3)顶点在Y轴的正方向.如a
有两个不相等的实数根,且一正一负ax平方+bx+c-1=0就是ax平方+bx+c=1即y=1,从图像上可以看出,y=1,y轴两侧都有相应的x存在.
∵有最高点∴a<0①;∵最大值是4,∴(4ac-b∧2)/4a=4②;再代入(3,0)(0,3)得9a+3b+c=0③;c=3④;①②③④即可得解再问:我奇迹般的比你先做出来,不过还是谢谢你再答:呵呵
(1)抛物线y=ax的平方+bx+c的顶点坐标为(2,4)-b/2a=2b=-4ay(2)=4a+2b+c=4c=4+4a(2)S三角形ODE:S三角形OEF=1:3DE:EF=1:3xE:xF=1:
从图中可以看出,抛物线的对称轴为:x=3因此,抛物线可以表示为:y=a(x-3)²+k将(1,0)、(4,2)代入上式:0=a(1-3)²+k4a+k=0.(1)2=a(4-3)&
y=ax²+bx+c的顶点坐标=a(x+b/2a)²+c-b²/4a;顶点坐标为(-b/2a,c-b²/4a)您好,很高兴为您解答,skyhunt
再问:好形象谢谢亲再答:丫哈哈,不谢~
解题思路:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-b/2a,4ac−b24a),对称轴直线x=-b/2a解题过程:
xx2,写成集合形式!
抛物线y=x²+3向左平移1个单位后得到y=(x+1)²+3=x²+2x+4所以a=1,b=2,c=4
y=ax²+bx+c=a(x²+bx/a+c/a)=a(x²+bx/a+b²/4a²-b²/4a²+c/a)=a(x+b/2a)&
当a=b=1,抛物线方程即为y=3x^2+2x+c△=sqrt(4-12c)=2*sqrt(1-3c)y与x轴交点为:(-2±2*sqrt(1-3c))/(2*3)=(-1±sqrt(1-3c))/3
将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为