如果点故事三角形abc的重心,求证ag bg cg等于零向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:34:02
点O是三角形ABC的重心 ==> 中线AD、BE、CF过点O,且 向量AO=2向量OD,向量BO=2向量OE,向量CO=2向量OF.延长AD到G使得 向量
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
S△AOB=S△BOC=S△AOC,理由如下:分别延长AO、BO、CO,交BC、AC、AB于D、E、F,∵O是△ABC的重心,∴AD、BE、CF是△ABC的中线,∴S△ABD=S△ABE=1/2S△A
重心的坐标是这三个顶点坐标的和的三分之一所以()+()+()=(3.6.3)所以G(1.2.1)
如图,由题可知,ED是△ABC的中位线∴ED=1/2BC .①∵M,N为重心,取B
由G是△ABC的重心,DF过点G,且DF‖AB,可得CD/CB=2/3.∴DF=2/3AB.由DE‖AC,CD/CB=2/3,得DE=1/3AC.∵AC=根号2AB,∴AC/AB=根号2,DF/DE=
坐标相加除以3xo=(3+1-1)/3=1yo=(3+0+3)/3=2zo=(1+5-3)/3=1所以重心坐标为G(1,2,1)
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
(1)中使用了重心的向量规律,从重心延伸出的分别连接到三角形三个顶点的三个向量的和向量为零向量.∴和向量的水平分向量也为零向量∵x₁-x、x₂-x、x₃-x分别为这
设M为BC中点,则向量OA*(向量OB+向量OC)=OA*2OM=OA*(-OA)=-OA^2=-4
因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=
重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2
连接各交点,将重叠部分分为了6个小三角形,可以看出这6个小三角形是全等的正三角形,且和非重叠部分的6个小三角形也全等.从而知道重叠部分的面积为6/9*原三角形的面积√3/6
S△ABC=(1/2)BC*AE=9.(AE⊥BC).S△BOC=(1/2)BC*OF(OF⊥BC).可见三角形ABC与OBC是是同底不等高的两个三角形.由相似三角形可证明OF=AE/3.∴S△OBC
因为向量BC=向量AC-向量AB,向量AG=1/3(向量AB+向量AC),所以向量BC*向量AG=1/3(|AC|²-|AB|²)=1/3(13²-5²)=14
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
是不是GF和GE呀再问:这道题我已经会了,谢谢
答案等于三分之二根号三
是垂心吧.垂心是三角形三条高的交点.证明如下:如图,在三棱锥P-ABC中,PA⊥PC⊥PB,我们设点P在面ABC上的射影为P1.于是就有PP1⊥面ABC,∵BA∈面ABC,∴PP1⊥BA,∵PA,PB