如果矩阵A= B是三阶非零矩阵,且AB=O,求t的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:36:03
如果矩阵A= B是三阶非零矩阵,且AB=O,求t的值
两个矩阵相乘等于零矩阵,AB=O.如果A可逆,是否B=O?

B=O.显然,方程左右同时左乘A的逆,不就得出结论了嘛.顺便BS一下不看题就乱回答的人.

如果A是一个m*n矩阵B是一个n*m矩阵,若m>n证明|AB|=0.

本题是一些基础知识点的堆积....秩总是越乘越小的.r(AB)

矩阵AB=0,则矩阵A,矩阵B的关系

显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的

矩阵AB=0,其中矩阵A可逆,能推出矩阵B=0吗?

是的,由矩阵A可逆这个条件可以推出矩阵B=0AB=0,现在A可逆,那么在等式的两边同时左乘A的逆即A^(-1)故A^(-1)AB=0,显然A^(-1)A=E(单位矩阵)所以B=0

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

矩阵证明矩阵A,B为可逆矩阵,证明如果AB=BA,那么A^-1B^-1=B^-1A^-1

B=(A+A')/2;B'=(A'+A)/2=BC=(A-A')/2;C'=(A'-A)/2=-CA=B+C又设:A=B1+C1;其中:B1'=B1;C1'=-C1A=B+C=B1+C1;∴C1-C=

A矩阵*B的转置矩阵=?

不相等!如果它们相等,则有AB^T=BA^T=(AB^T)^T即此时必有AB^T是对称矩阵

已知矩阵n*n矩阵B=A*A',A为n*r矩阵,求解A矩阵,matlab如何实现

小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交

矩阵A的逆矩阵乘以矩阵B和矩阵B乘以矩阵A的逆矩阵 结果相等吗

A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律

已经矩阵A,B,AX=B,求矩阵X

初等行变化啊,(A,E)化成(E,B),B就是A的逆

如何用MATLAB求矩阵:已知矩阵a,和矩阵b,a=b*c,求矩阵c

显然,同时左乘一个b的逆矩阵就行了,所以:c=inv(b)*a

如果有AB两个矩阵,A*A=B*B,那么A=B对吗

不是的.A*A=B*B只能说明|A|=|B|,不能说明A=B

证明 如果A,B是正定矩阵,那么A+B也是正定矩阵.

因为A,B都是正定矩阵所以对任意n维列向量x≠0,x'Ax>0,x'Bx>0所以x'(A+B)x=x'Ax+x'Bx>0所以A+B是正定矩阵.注:x'=x^T

矩阵AB=AC,A不等于0矩阵,如果A是m*n矩阵,且R(A)=n,则为啥能推出B=C?

AB=AC,则A(B-C)=0所以B-C是由Ax=0的解空间中向量构成的矩阵A即便不是零矩阵,只要A的行列式等于0,Ax=0也能有非零解,故B-C可以不等于零而A是m*n矩阵,r(A)=n时,Ax=0

线性代数:如果A矩阵与B矩阵等价,那么A矩阵与B矩阵的转置等价吗?

不一定吧,首先得是同形矩阵吧,转置之后一个是m*n,一个是n*m那就不等了,方阵的话还是等价的再问:方阵条件下,A,B等价,那A矩阵与B的转置矩阵是否等价呢再问:再问:请看看第三题吧再答:应该选D吧。

设A,B为n阶矩阵,如果B为矩阵方程AXA=A的唯一解,证明:A为矩阵方程BXB=B的解

A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1

计算矩阵c=a+b(注:矩阵a,矩阵b,矩阵C都是3*3的大小.)

#include"stdio.h"intmain(){freopen("cz.dat","r",stdin);freopen("jg.dat","r",stdout);inta[3][3],b[3][

矩阵可逆的定义和推论《线代》上,逆矩阵的定义:对于n阶矩阵A,如果存在矩阵B,使得AB=BA=I,那么A称为可逆矩阵,而

因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等.所以在定义逆矩阵的时候就要求AB和BA都是E才行.只不过后面才证明了如果AB=E,则

逆矩阵定义问题对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则说矩阵A是可逆的,并把B矩阵称为A的逆矩阵.如果

可以.因为AB=E,所以|A||B|=|AB|=|E|=1.所以A的行列式不等于0,故A可逆.且A^-1=A^-1E=A^-1AB=B.满意请采纳^_^