如果级数n=0→∞ un收敛,则limun=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:58:47
如果级数n=0→∞ un收敛,则limun=
如果级数Un收敛,1/Un的敛散性?

(级数收敛则通项必趋于零)Un收敛则Un趋于0,则1/Un不可能趋于0(否则1=Un*(1/Un)趋于0,矛盾),所以1/Un一定发散

如果数项级数∑(n=1,∞)un收敛,则级数∑(n=1,∞) un+10的敛散性是

发散.∑(n=1,∞)(un+10)=∑(n=1,∞)un+∑(n=1,∞)10,后者无穷大

对于某级数的一般项Un,当n→∞时,若Un→0,则该级数的敛散性如何?反之,若该级数收敛,一般项Un一定趋于0吗?

Un→0,则级数收敛;反之未必,没有人规定数列极限必须是0.比如:1,1+1/1,1+1/2,1+1/3……收敛到1.再问:若Un=1/n,n→∞时,它也是趋于0的。可是它不收敛吧?再答:数列本身是收

证明:若{Un}满足Lim(n→∞)nUn=1,则∞∑(n=1) (-1)^n(Un+Un+1)收敛

其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1

证明级数收敛 Un=n/((ln n)^n)

你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛

交错级数莱布尼茨定理如题,莱布尼茨定理为Un>U(n+1),limUn=0,级数收敛,级数通项(-1)^(n-1)Un,

级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛

∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

若∑(n=1) ∞ Un 收敛,求lim┬(n→∞) Un

若∑(n=1)∞Un收敛,那么lim(n→∞)Sn存在,设为S那么lim(n→∞)S(n-1)=Slim(n→∞)un=lim(n→∞)[Sn-S(n-1)]=lim(n→∞)Sn-lim(n→∞)S

设数列{Un}收敛于a,则级数(Un-U(n-1))=?)

应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676

高数级数习题,1 级数un=ln n/n^2 他是发散的还是收敛点?2 选择:设0≤un≤1/n 则下列级数一定收敛的是

再问:这是分开的两题........第二题和第一题无关.............能麻烦给下第二题的解答吗谢谢!

设级数∑(n=1)Un收敛,且∑Un=u,则级数∑(Un+U(n+1))=?

∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1

设正项级数∑(n=1→∞)Un收敛,C是常数,则下列选项中级数必收敛的是 高手来~不能证明举个反例也可

讲个大概.ΣUn收敛,则由收敛必要性得通项Un趋于0(当n趋于无穷时).所以从某一项开始Un

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可

lim(n→∞)Un*n=0,则级数∑Un收敛.这句话正确吗?答案说是错的 能来个反例吗?

这个确实错的.如Un=1/(n*lnn),虽然满足条件,但级数发散于ln(lnn).

设数列{un}收敛于a,则级数(un-u(n-1))=?)

∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/