1 2 3 4-- (n-1)的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:28:25
裂项an=(n+2)/[n!+(n+1)!+(n+2)!]=(n+2)[n!(1+n+1+(n+1)(n+2))]=(n+2)/[n!(n+2)^2]=1/[n!(n+2)]=(n+1)/(n+2)!
f(x)=∑x^n/[n(n+1)]求导:f'(x)=∑x^(n-1)/(n+1)F=x^2f'(x)=∑x^(n+1)/(n+1)再求导:F'=∑x^n=x/(1-x)=1/(1-x)-1积分:F=
M=1+2+3+…+n=[n(n+1)]/2N=1²+2²+3²+…+n²=[n(n+1)(2n+1)]/6P=1³+2³+3³+
少了一个括号吧?应该是n/[(n+4)(n+5)]S=1/(5*6)+2/(6*7)+3/(7*8)+.=(1/5-1/6)+2(1/6-1/7)+3(1/7-1/8)+.=1/5-1/6+2/6-2
当N>3时,N的N+1次方>N+1的N次方当N
求数列{an}前n项的和,常用的方法就是裂项相消法.因为an=n(n+1)=n(n+1)[(n+2)-(n-1)]/3=[n(n+1)(n+2)-(n-1)n(n+1)]/3=(1/3)[-(n-1)
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
(1)当n≥2时,an=Sn-Sn-1=n(2n-1)-(n-1)(2n-3)=4n-3,当n=1时,a1=S1=1,适合.∴an=4n-3,∵an-an-1=4(n≥2),∴an为等差数列.(2)由
e^(-x^2)(负号在x^2外面)你去看看e^x的幂级数展开,然后作变量代换(因为e^x是在整个实轴上展开的,所以不必担心变量代换以后收敛半径的问题)
(1)令n=1a1=S1=32-1+1=32Sn=32n-n²+1Sn-1=32(n-1)-(n-1)²+1an=Sn-Sn-1=32n-n²+1-32(n-1)+(n-
使用分子有理化的方法分子分母同时乘以它的共轭数(简单来讲一般就是把+、-号换一下)这一题里:根号n+1-根号n分子分母同乘以根号n+1+根号n就变成了1/(根号n+1+根号n)根号n-根号n-1分子分
[n^(n+1)]/[(n+1)^n]=[n/(n+1)]^n*n={[n^(1+1/n)]/(n+1)]^nn^(1+1/n)>n+1故:n^(n+1)>(n+1)^n2004^2003
S=0.25n(n+1)(n+2)(n+3)再问:能提供方法么?谢谢!是用裂项么?再答:n(n+1)(n+2)=0.25[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
分子分母同时乘以二化为[∞∑n=1][2^n×x^n]/2(n!),整理[∞∑n=1]﹙2x﹚^n/(n!)×1/2,由公式e^x=[∞∑n=1]x^n/(n!)可得1/2e^2x