1 2,1 6,1 12,1 30,1 42--,问1 9120是第几个数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:10:53
1 2,1 6,1 12,1 30,1 42--,问1 9120是第几个数?
112+120+130+142+156+172+190

112+120+130+142+156+172+190,=(13-14)+(14-15)+(15-16)+…+(19-110),=13-14+14-15+15-16+…+19-110,=13-110,

12+16+112+120+130+142+156+172

12+16+112+120+130+142+156+172=1-12+12-13+13-14+14-15+15-16+17-18+18-19=1-19=89.

观察下面的一列数,按某种规律在横线上填上适当的数:12,16,112,120

第1个数:12=11×2;第2个数:16=12×3;第3个数:112=13×4;…∴第100个数:1100×101=110100;这100个数的和为:12+16+112+…+110100=(1-12)

16+112+120+130+142+156+172=? 用简便算法,过程和答案

16+112+120+130+142+156+172=(16+112)+(120+130)+(142+156)+172=128+250+300+172=(128+172)+250+300=300+55

112+120+130+142+156+18

112+120+130+142+156+18=13×4+14×5+15×6+16×7+17×8+18=13-14+14−15+15−16+16−17+17−18+18=13.

12 *16 *112 *120 *130 怎样简算

1/2+1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6=1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6=1/2+1/2-1/6=5/6

1÷16/12等于

1÷16/12=1×12/16=3/4

巧算1/4+1/12+1/24+1/40+1/60+1/84+1/112

1/4+1/12+1/24+1/40+1/60+1/84+1/112=1/4+1/2(1/6+1/12+1/20+1/30+1/42+1/56)=1/4+1/2(1/2-1/3+1/3-1/4+1/4

1/12+1/24+1/40+1/60+1/84+1/112+1/144+1/180

1/12+1/24+1/40+1/60+1/84+1/112+1/144+1/180=1/2*(1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)=1/2*(1/2-1/3

1/4+1/12+1/24+1/40+1/84+1/112+1/144+1/180

1/4+1/12+1/24+1/40+1/84+1/112+1/144+1/180=1/4+(1/4-1/6)+(1/6-1/8)+(1/8-1/10)+(1/12-1/14)+(1/14-1/16)

1/4+1/12+1/24+1/40+1/60+1/84+1/112

1/4+1/12+1/24+1/40+1/60+1/84+1/112=1/2*(1/2+1/6+1/12+1/20+1/30+1/42+1/56)=1/2*(1-1/2+1/2-1/3+1/3-1/4

数字推理 16,16,112,124,( )

首位1不动6,6,12,24作差0,6,12后面是18带回去24后面是42答案是142

12+1+112+2+212+…+4912+50

12+1+112+212+…+4912+50,=(1+2+…+50)×2-50+12×50,=(1+50)×50÷2×2-50+25,=2550-50+25,=2525.

1+1+1+3+5+7+9+12+13-12-45-78+112等于多少?

【解】1+1+1+3+5+7+9+12+13-12-45-78+112=3+3+5+7+9+13+112-45-78=3+3+5+7+9+13+112-123=11+112+(7+9+13)-123=

观察下列各式:12=11×2=11−12,16=12×3=12−13,112=13×4=13−14,120=14×5=1

(1)1x(x+1)=1x-1x+1;(2)原式=1-12+12-13+13-14+…+1x−1-1x+1x-1x+1,=1-1x+1,=xx+1;(3)方程变形得:1x−2-1x−1+1x−1-1x

(1)观察下列各式:12=11×2=11−12,16=12×3=12−13,112=13×4=13−14,120=14×

(2)由(1)可得:1x(x+1)=1x-1x+1;(3)12+16+112+…+1(n−1)n+1n(n+1)=11-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1;(4)

观察下列算式:12=11×2=11−12;16=12×3=12−13;112=13×4=13−14;…

(1)∵12=11×2=11-12;16=12×3=12-13;112=13×4=13-14,∴1n(n+1)=1n-1n+1.故答案为:1n(n+1)=1n-1n+1;(2)∵由(1)知,1n(n+

计算:(12+14+16+18)−(13+16+19+112)+(14+18+112+116)−(15+110+115+

(12+24+18+116)-(13+16+19+112)+(14+18+112+116)+(15+110+115+120)=12×(1+12+13+14)−13×(1+12+13+14)+14×(1

从和式12+14+16+18+112+118+124中去掉两个分数,使余下的数的和为1,则去掉的两个分数为 ___ .

(12+14+16+18+112+118+124)-1,=(12+14+12-13+18+13-14+118+124)-1,=(1+18+118+124)-1,=18+118+124,=(18+124