存在三阶非零矩阵AB=0 则λ=1,B=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:39:51
存在三阶非零矩阵AB=0 则λ=1,B=0
设n阶矩阵A≠0,试证存在一个非零n阶矩阵B,使AB=0的充要条件R(A)

必要性因为AB=0所以B的列向量都是Ax=0的解由于B≠0所以Ax=0有非零解所以r(A)

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵吗?

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵.因为A为可逆矩阵,所以A^(-1)存在,两边同乘以A^(-1)A^(-1)AB=A^(-1)OB=O再问:为什么不能找到一个非零矩阵与A

【急】设A为n阶矩阵,证明A的行列式=0,且存在非零n阶矩阵B时,AB=0

行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)

若A,B均为n阶矩阵,且AB=BA,证明:如果A,B都相似于对角矩阵,则存在可逆矩阵C使C^1AC与C^1BC均为对角矩

A,B满足上述条件称为同时对交化.当且仅当A,B可交换,A,B可同时对角化.具体的证明,如果C^(-1)AC与C^(-1)BC均为对角矩阵,则C^(-1)ACC^(-1)BC=C^(-1)BCC^(-

|A|=0,A为n阶矩阵,求证:存在非零方阵B,使得AB=BA=0

可以这么证:设A是N×N的方阵.首先,存在非零列向量X(NX1),满足AX=0,因为A不满秩.其次,存在非零列向量Y(N×1),满足A(T)Y=0,因为A(T)也不满秩(T代表矩阵转置).然后,考虑这

矩阵AB=0,则矩阵A,矩阵B的关系

显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的

矩阵AB=0,其中矩阵A可逆,能推出矩阵B=0吗?

是的,由矩阵A可逆这个条件可以推出矩阵B=0AB=0,现在A可逆,那么在等式的两边同时左乘A的逆即A^(-1)故A^(-1)AB=0,显然A^(-1)A=E(单位矩阵)所以B=0

一道看不懂的矩阵题对于给定的n阶矩阵A,如果存在n阶矩阵B,使得AB=BA,则称B与A可交换.试求出 A= ( 1 0

11=b11+b12b12=b12b11+b21=b21+b22b12+b22=b22上述四个式子得b12=0.b11=b22=a,b21与AB=BA无关,赋值b21=b,答案应没错啊.

设非零矩阵A是m*s矩阵,B是s*n矩阵满足AB=0,则R(A)

不对.反例:A:ab00cd00B:00001234A:2×4矩阵,a,b,c,d任取.B:4×2矩阵,R(B)=2AB=0

设A为n阶非零矩阵,且|A|=0,证明存在n阶非零矩阵B使AB=0

因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.

设A是为n阶非零矩阵且|A|=0,证明:存在n阶非零矩阵B,使AB=0(用行列式的知识)

证明:|A|=0即AX=0存在非零解那么若x1为AX=0的解向量,则利用x1,构成解矩阵B即可B=(x1,x2,…,xn),其中x1不等于0,x2=x3=…=xn=0而B为非零矩阵,即为所求

A= ,B为三阶非零矩阵,且AB=0则t=

假设A可逆,由AB=0左乘A逆得B=0不符题意A不可逆则A的行列式为0|A|=7t+21=0t=-3

设A是n阶不可逆矩阵 证明 存在n阶非零矩阵B C 使得AB=CA=0

(1)A不可逆,故其秩小于n,故可经过有限次行初等变换P1,P2,.Pk变为第一行元素全为0的矩阵DD=(Pk).(P2)(P1)A=QA,设:Q=(Pk).(P2)(P1)取F为这样的矩阵:其第一行

设AB=0,A是满秩矩阵 则B=

因为A是满秩矩阵,所以A^(-1)存在AB=0两边同时左乘A^(-1)得A^(-1)AB=A^(-1)0得B=0

设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)

证明:(=>)因为AB=0,所以B的列向量都是AX=0的解.又因为B≠0,所以AX=0有非零解.所以r(A)

A 是mxn 矩阵,则存在矩阵B,使得AB = 0 且有r(A) +r(B)=n

设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(

矩阵AB=0 ,行列式AB=0

不是矩阵和行列式是两个概念行列式是值和代数式矩阵是数量关系表再问:为什么矩阵AB=0,可以推出A的行列式=0或者B的行列式=0再答:不对吧A=-11B=11AB=0但不可以推出A的行列式=0或者B的行

矩阵可逆的定义和推论《线代》上,逆矩阵的定义:对于n阶矩阵A,如果存在矩阵B,使得AB=BA=I,那么A称为可逆矩阵,而

因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等.所以在定义逆矩阵的时候就要求AB和BA都是E才行.只不过后面才证明了如果AB=E,则