定积分0到a √(a^2-x^2) a>0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:31:14
这是在第一象限的部分,所以x=a,t=π/2
解y=√x^2是偶函数,注意a>0则∫(√x^2)dx(a>0)(上限a,下限-a)=2∫(√x^2)dx(a>0)(上限a,0)=2∫/x/dx(a>0)(上限a,0)=2∫xdx(a>0)(上限a
∫[0,√3a]1/(a^2+x^2)=∫[0,√3a]1/a^2(1+(x/a)^2)=1/a^2*∫[0,√3a]1/(1+(x/a)^2)=1/a^2*arctanx/a|[0,√3a]=1/a
积分(1,0)1/2x^2dx=1/2
∫[0,a]√(a^2-x^2)dx=[x/2*√(a^2-x^2)+a^2/2*arcsinx/a][0,a]=πa^2/4∫[0,2]x/√(1+x^2)dx=1/2∫[0,2]1/√(1+x^2
∫(0到1)xe^(2x)dx=1/2∫(0到1)xde^(2x)=1/2xe^(2x)-1/2∫(0到1)e^(2x)dx=1/2xe^(2x)-1/4e^(2x)+c
F(x)=S1/(x^2)dx=Sx^(-2)dx=1/(1-2)*x^(1-2)+c=-x^(-1)+c=-1/x+c在(a,b)上的定积分=F(b)-F(a)=1/a-1/
∫√(a^2-x^2)dx=a^2∫√[1-(x/a)^2]d(x/a)x/a=sinu,u=arcsin(x/a)∫√[1-(x/a)^2]d(x/a)=∫cosudsinu=∫cosu^2du=∫
用对称性与定积分含义计算.经济数学团队帮你解答,请及时评价.谢谢!
求定积分(0,a)∫x²√(a²-x²)dx原式=(0,a)∫(ax²√[1-(x/a)²]dx令x/a=sint,则dx=acostdt,x=0时,
刚回荅:∫xf(x)f'(x)dx=(1/2)∫xdf(x)^2=(1/2)xf(x)^2-(1/2)∫f(x)^2dx,代入上下限后=-1/2.选D
稍等,图片已经传上.点击放大,再点击再放大.
如果是从b到a的话,分子就是一个数,导数当然为0
∫x^2[根号(a^2-x^2)]dx=a^2∫x^2dx-∫x^4dx=1/3*a^2*x^3-1/5*x^5+c在0,a上的定积分为1/3*a^5-1/5*a^5=1/15*a^5
原式=∫(a-√2ax-x^2)/√2a-xdx积分区间(0,a)=∫(a/√2a-x)dx-√2ax-x^2/√2a-xdx积分区间(0,a)=-a∫1/√2a-xd(2a-x)-∫√xdx积分区间
函数e^(-x^2)在区间[-a,a]上的最小值是当x=0时的函数值为1,最大值是当x=a时的函数值为e^(-a^2),因此利用定积分估值性质估计得该积分∫(-a,a)e^(-x^2)dx(a>0)的
∫xf(x)f'(x)dx=(1/2)∫xdf(x)^2=(1/2)xf(x)^2-(1/2)∫f(x)^2dx,代入上下限后=-1/2.