定积分dx (e^(x 1) e^(3-x) 上限正无穷,下限0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:13:30
∫(0,1)(e^x+e^-x)dx等于e^x-e^-x|(0,1)答案为e-1/e
∫[0,2]e^x/(e^(2x)+1)dx=∫[0,2]de^x/(e^(2x)+1)=arctane^x|[0,2]=arctane^2-arctan1=arctane^2-π/4
令t=e^x,dx=1/tdt,原式=1/t√(1+t^-2)dt上限e下限1,化简,1/√(1+t^2)dt,这个就可以积分了,一个原函数为ln(t+√(1+t^2)),把上下限代入即可
∫上1下0e^x(1+e^x)^3dx=∫上1下0(1+e^x)^3d(e^x)=∫上1下0(1+e^x)^3d(1+e^x)=(1/4)(1+e^x)^4|=(1/4)[(1+e^1)^4-(1+e
=(1/2)∫(0,1)e^x²dx²=(1/2)e^x²|(0,1)=(1/2)×(e-1)=(e-1)/2
点击图片可放大,嘿嘿!
∫(1→e)x·lnx·dx=x²/2·lnx|(1→e)-∫(1→e)x²/2·1/xdx=e²/2-∫(1→e)x/2dx=e²/2-x²/4|(
令t=√(e^x-1),则t^2+1=e^x,换元变积分限,∫tdln(t^2+1)=2∫t^2/(t^2+1)dt=2∫dt+2∫1/(t^2+1)dt
∫[1,e]lnx/x*dx因为dlnx=1/xdx对于∫lnx/xdx=∫lnxdlnx=(ln²x)/2从1到e定积分=(ln²e-ln²1)/2=1/2
原式=∫(0,1)e^xdx=lim(n->∞)[e^(1/n)/n+e^(2/n)/n+e^(3/n)/n+.+e^(n/n)/n](由定积分定义得)=lim(n->∞){(1/n)[e^(1/n)
原式=∫(1,e)knxdlnx=(lnx)²/2(1,e)=1/2-0=1/2再问:为什么可以=∫(1,e)lnxdlnx再答:dx/x=?采纳吧
sysxabf1=x+1;f2=0.5*x^2;int(f1,0,1)+int(f2,1,2)f=exp(ax)*sin(bx)inf(f)
LZ的题貌似打少了点东西吧
解由分步积分法,可得∫(lnx)dx=(xlnx)-∫xd(lnx)=(xlnx)-∫dx=(xlnx)-x+C,(C为常数)∴由牛--莱公式,可得原式=1
e^(-1)+1=1/e+1=(1+e)/e,所以ln[e^(-1)+1]=ln[(1+e)/e]=ln(1+e)-lne=ln(1+e)-1
设F'(x)=e^(-x)^2(定积分[cosx,1]e^(-t)^2)dt=F(1)-F(cosx)d(定积分[cosx,1]e^(-t)^2)dt/dx=[F(1)-F(cosx)]'=F'(1)
∫01(2x+e^x)dx=(x方+e^x)|(0,1)=(1+e)-(0+1)=e
这是求不定积分还是定积分?积分区间呢?∫√e^x/√(e^x+e^-x)dx=∫√e^x/√[1+e^(2x)]/√e^xdx=∫d(e^x)/√[1+e^(2x)]令e^x=tanθ,d(e^x)=
这题应该一般会告诉你k>0吧,如果没有要讨论当k>0时,答案是1/k这里有一个公式比较常用最好可以记住∫(0,∞)x^ne^(-x)dx=n!所以这题是1/k一般做法如下∫(0,∞)kxe^(-kx)