定积分在区间0到1上1÷(1 e^-X)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:52:58
很简单积分号内分式上下同乘以sinX+cosX的conjugate也就是SinX-CosX那么,现在分式下方就是(SinX)^2-(CosX)^2这样你把分式上面的Sinx-Cosx拆开拆成sinX/
第一个1/(x^2+2x+2)^0.5的定积分可以化简成1/((x+1)^2+1)^0.5,然后把(x+1)当成u,du/dx=1,所以du=dx,所以原式可以换成∫1/(u^2+1)^0.5du,这
解 (解题过程中注意积分值与积分变量的无关性)
因为当Pai/2
把e的x次方幻元为t就很好求了
在区间(0,1)上∵e^(x^2)∴e^(x^2)的图像在e^x图像的下方∴e^(x^2)从0到1的积分面积∴∫e^(x^2)dx<∫e^xdx(0→1)
得用凑微分法∫√(2x+1)dx=(1/2)∫√(2x+1)d(2x+1)=(1/2)*(2/3)*(2x+1)^(3/2)|=(1/3)*(2x+1)^(3/2)|=(1/2)*(5√5-3√3)再
令t=π-x,做代换可以证明.详见参考资料
答:∫1到2(e^(2x)+1/x)dx=e^(2x)/2+lnx|1到2=e^4/2+ln2-e^2/2-ln1=e^2/2*(e^2-1)+ln2
原式={(1+lnx)d(lnx)=lnx+[(lnx)^2]/2=1-0+1/2-0=3/2
令y=e^x=>x=lny,dx=1/ydy当x=0,y=1//当x->+∞,y->+∞∫[0,+∞]1/(1+e^x)dx=∫[1,+∞]1/[y(1+y)]dy=∫[1,+∞][(1+y)-y]/
∫√[1-cos(2x)]dx=∫√[2(sinx)^2]dx(应用倍角公式)=√2∫sinxdx=√2[cos(0)-cos(π)]=√2(1+1)=2√2.
再问:能够用定积分的性质解答一下吗谢谢再答:定积分指函数下围成的图形面积。因为e^x的线比e^-x要高。所以e^x下的面积要大一点
y=√(x-x²)≥0,x∈[0,1]===>y²=x-x²===>x²-x+y²=0===>[x-(1/2)]²+y²=1/4它
很遗憾,这结果与真正结果不符合但是请你再检查一下哪里有问题吧
√x=tx=t²dx=2tdt∫(0-->1)2te^tdt=2∫(0-->1)tde^t=2te^t-2∫e^tdt=2te^t-2e^t(0-->1)=2e-2e-(-2)=2
∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)(0到1)=1/2*e^1-1/2*e^0=(e-1)/2
(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.