实对称矩阵的特征值 重数是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:42:50
实对称矩阵的特征值 重数是
对称正定矩阵的特征值问题

前面两个问题是肯定的,后面题目问的是不是有问题,正定矩阵的特征向量?

线性代数中矩阵特征值的重数是指某个特征值重复出现的次数吗?

某个特征值的重数分为几何重数和代数重数,代数重数是指特征值为重根的重数(就是你所说的重复出现的次数),几何重数是指特征值对应的特征向量的个数.几何重数总是不超过代数重数的.

实对称矩阵相同特征值的特征向量相互正交吗?

特征向量是有时正交有时不正交的.再问:那么什么情况下正交,什么情况下不正交啊,有规律吗?再答:只要是两重以上的特征值,正交和不正交的特征向量都是存在的,任何时候都可以找到正交和不正交的特征向量

实对称矩阵的不同特征值对应的特征向量是正交的,那反之呢?

在这个题目的情形下答案是肯定的.可以这样考虑.与已知的单根的特征向量(a,b,c)≠0正交的向量满足齐次线性方程组ax1+bx2+cx2=0.此齐次线性方程组的基础解系含2个解向量.而由实对称矩阵的性

证明实对称矩阵的特征值是实数

设A是一个n*n的实对称矩阵,那么AX=aX(这里a是一个复数)那么两边同取共轭,得到conj(AX)=conj(aX)=conj(a)conj(X)因为A是对称的所以conjA=A成立,那么Acon

怎么证明对称矩阵的所有特征值全是实数

说实称矩阵吧给比较初等办吧A称L特征值E应特征向量D表示共轭转置(数比L即共轭)AE=LE(1)则D(E)AE=LD(E)E=L|E|(2)(1)求共轭转置D(E)A=D(L)D(E)则D(E)AE=

请问实对称矩阵用非正交矩阵对角化,所得对角矩阵的对角元素是否是特征值?

只要是相似对角化,对角矩阵上的元素就是特征值正交对角化主要是用在二次型上,此时有Q^-1AQ=Q^TAQ

关于实对称矩阵的特征值求行列式的问题

n=1的时候最简单n=2的时候取两个对角元一样大的对角阵,用平均值不等式验证这时候达到最大值n>2的时候不存在最大值,因为可以让前三个对角元取成-t,-t,N+2t,余下的元素都是0,这样当t->+o

对称正定矩阵的特征值问题3

3.对于对称方阵A(不一定正定)来说,它一定能有n个非负特征值吗?显然不能.比如-E,没有听说过负定矩阵吗?

各项都为3的三阶矩阵的特征值的几何重数和代数重数是怎么算的?对几何重数和代数重数不了解望详解.

代数重数即特征值的重数几何重数就是属于特征值的线性无关的特征向量的最大个数|A-λE|=(9-λ)λ^2先提交,然后继续哈再答:(A-9E)x=0的基础解系为(1,1,1)^T所以特征值9的代数重数为

对称正定矩阵的特征值问题2

可能不可逆的,对称矩阵又很多的,比如就第一行第一列元素为1,其他元素都为0的三阶方阵,显然是不可逆的

证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩阵T,使T'AT成对角型,而对角线上的元素就是它的特征根.由此,开证,(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T

A是实对称矩阵,那么A的特征值一定是?

实数定理:实对称矩阵的特征值都是实数.

矩阵jordan块与相应算子的特征值的代数重数和几何重数的关系,要怎样来解释,

代数重数指特征值是几重根几何重数指该特征值所对应特征向量所构成空间的维数恒有几何重数

实对称矩阵的特征值必为实数

证明:设λ是实对称矩阵A的特征值,α是A的属于特征值λ的特征向量即有A'=A,A共扼=A,Aα=λα,α≠0.考虑(α共扼)'Aα=(α共扼)'A'α=(Aα共扼)'α=((Aα)共扼)'α所以λ(α

为什么实对称矩阵的几何重数必等于代数重数

因为它可以对角化再答:而且对角化等价于几何重数等于代数重数再问:为什么可以对角化再答:这是一个基本定理,可以看二次型那里。用归纳法证明的

对称正定矩阵的特征值问题4

对于非对称矩阵A,其特征值可能出现虚数,但不论如何总有μ_min再问:也就是说此时对应的特征向量也有可能是复数域的了?另外,要是只在实数域内求特征值,会出现什么结果啊?再答:一般来讲特征值和特征向量当

所谓特征值的重数就是一个矩阵中相同特征值的个数吗?

是称为代数重数属于某个特征值的线性无关的特征向量的个数称为这个特征值的几何重数几何重数